
Imper ial College of Science,

Technology and Medicine
(University of London)

Depar tment of Computing

Predator – A Hierarchical Petri Net Editor

by

Wass. M .

Submitted in par tial fulfilment

of the requirements for the MSc

Degree in Computing Science of the

University of London and for the

Diploma of Imperial College of

Science, Technology and Medicine.

September 2001

 1

Abstract

Petri nets are a widely used modelling technique and a number of Petri net

editor tools exist to design Petri nets. However current tools provide little

support for hierarchical Petri nets and all analysis features are built into the

tools. A Petri net editor was designed and implemented. It provides

improved support for hierarchical Petri nets, allowing complex Petri nets to

be simplified into smaller subnets. The Petri net editor also incorporates an

open architecture enabling the dynamic loading of separately implemented

analysis features. An invariant analysis module was implemented to

demonstrate the operation of the open architecture.

 2

Acknowledgements

Many thanks to William Knottenbelt my project supervisor who has been a

continual source of support and guidance throughout the project.

Thanks also to the Java Tutorial, without which I don’ t think I would have

got very far.

 3

Contents

ABSTRACT ..0

ACKNOWLEDGEMENTS...2

CONTENTS..3

1 INTRODUCTION ...6

2 BACKGROUND..8

2.1 PETRI NETS..8
2.1.1 Development of Petri Nets..8
2.1.2 Hierarchical Petri Nets..11
2.1.3 Properties of Petri Nets..12
2.1.4 Petri Net Analysis ..13

2.1.4.1 Animation – Token Game Animation13
2.1.4.2 Correctness Analysis...13
2.1.4.3 Performance Analysis ...16

2.2 PETRI NET EDITORS...17
2.2.1 Basic Features...17

2.2.1.1 Platforms...17
2.2.1.2 Editing capabilities..17
2.2.1.3 Petri Nets Supported ...19

2.2.2 Hierarchical Petri Nets..19
2.2.3 Analysis..20

2.2.3.1 Invariant Analysis...21
2.2.4 File Formats..22

3 DESIGN..23

3.1 OUTLINE SPECIFICATION..23
3.1.1 General Properties...23
3.1.2 Editor Properties ...23
3.1.3 Hierarchical Petri Net Properties..24
3.1.4 Open Architecture..24
3.1.5 File Format..25

3.2 JAVA PROGRAMMING LANGUAGE ..25
3.3 CLASS DESIGN ...25

3.3.1 An Object Oriented Petri Net ...25
3.3.2 Graphical User Interface Design...26

3.3 OPEN ARCHITECTURE DESIGN ...29
3.4 FILE FORMAT DESIGN ..29

4 IMPLEMENTATION ...35

4.1 IMPLEMENTATION OF PETRI NET CLASSES ...35
4.1.1 Implementation of PetriComponent ...35
4.1.2 Implementation of An Object Oriented Petri Net36

4.2 GRAPHICAL USER INTERFACE IMPLEMENTATION38
4.2.1 Swing Components...38
4.2.2 Interaction of Petri Net Classes with User Interface....................40

 4

4.3 HIERARCHICAL PETRI NET IMPLEMENTATION44
4.3.1 Interaction Points...44
4.3.2 Addition of Subnets..46
4.3.3 Switching between levels of the subnet...46

4.4 OPEN ARCHITECTURE ..49
4.5 INVARIANT ANALYSIS MODULE...52

4.5.1 Invariant Analysis Algorithm...52
4.5.2 InvariantDialog..54

4.6 FILE FORMAT ...54

5 RESULTS & CASE STUDIES...57

5.1 BASIC EDITOR FEATURES...57
5.2 HIERARCHICAL PETRI NETS...58
5.3 OPEN ARCHITECTURE ..61
5.4 INVARIANT ANALYSIS MODULE...61

6 CONCLUSION & FUTURE WORK ...67

6.1 GENERAL FEATURES..67
6.2 HIERARCHICAL PETRI NETS...67
6.3 OPEN ARCHITECTURE ..68
6.4 INVARIANT ANALYSIS MODULE...69
6.5 FILE FORMAT...69
6.6 CONCLUDING REMARKS ..70

7 BIBLIOGRAPHY...71

7.1 BOOK & JOURNAL REFERENCES ..71
7.2 URL REFERENCES..72
7.3 TOOL REFERENCES ..72

8 APPENDIX ..74

9 USER GUIDE ...75

9.1 GETTING STARTED...75
9.1.1 Loading..75
9.1.2 Initial Screen..75

Components of the User interface...75
9.2 DESIGNING A SIMPLE PETRI NET ...76

9.2.1 Adding Arcs..79
9.2.2 Tokens..81

9.3 SUBNETS..82
9.3.1 Adding Subnets ..82
9.3.2 Subnet Interaction Points...84
9.3.3 Editing a Subnet...85
9.3.4 Saving Hierarchical Petri Nets..86

9.4 EDITING PETRI NET COMPONENTS...87
9.4.1 Editing Transitions, Places and Subnets......................................87
9.4.2 Editing Arcs...90
9.4.3 Removing Petri Net Components ...90
9.4.4 Opening, Saving and New Files...91

9.5 PETRI NET ANALYSIS – OPEN ARCHITECTURE92
9.5.1 Module Interface..92

 5

9.5.2 Loading an Analysis Module..92
9.5.3 Running An Analysis Module...93

9.6 INVARIANT ANALYSIS MODULE...93

1 INTRODUCTION

 6

1 Introduction

Petri nets are popular modelling technique used in many disciplines including

the design of concurrent systems, communication protocol design and

analysis (Woodside & Li, 1991), and the modelling of manufacturing systems

(Ciardo & Trivedi, 1993).

There are a number of Petri net editor tools available, offering a range of

features from simple editing to complex simulations. Petri net editors

provide only limited support for hierarchical Petri net design, where by a

system is decomposed into a set of Petri nets rather than a single net. Such

approaches simplify system design, because different components of a

system can be designed and modelled individually.

Petri net properties such as liveness, safeness and boundedness, can be tested

for all Petri nets. Petri net editor tools often provide built in analysis features

to verify these properties. However these are often limited and may not

provide the analysis required.

The aim of this project is to design and implement a Petri net editor that will

address the current lack of support for hierarchical Petri nets and the

limitations of analysis features in current editors. Support for hierarchical

Petri nets requires a suitable graphical representation of hierarchical Petri

nets and the ability to navigate around a hierarchical Petri net.

To address the limitations of Petri net analysis features offered by Petri net

editors, the editor will incorporate an open architecture, allowing the dynamic

loading of separately implemented analysis features. This will enable users

to dynamically load analysis features as desired, even offering users the

opportunity to implement their own analysis features.

1 INTRODUCTION

 7

Chapter two introduces the background of Petri nets, their properties and

analysis techniques. The features offered by existing Petri nets editors are

also investigated in this chapter. This is followed by the Design chapter,

which discusses the Petri net editor’s design issues. Implementation (Chapter

4) describes how the designed editor was implemented. The features of the

implemented editor are then tested and discussed with a number of case

studies in the Results (chapter 5) and Conclusion (Chapter 6). A user guide

for Predator, the Petri net editor tool implemented is provided in chapter 9.

2 BACKGROUND

 8

2 Background

This chapter begins by introducing the origin of Petri nets and their basic

structure. Hierarchical Petri nets are then introduced before the general

properties of Petri nets and analysis techniques to study them. The second

part of the chapter considers the properties offered by existing Petri net

Editing Tools and discusses the capabilities required by the Petri net Editor to

be developed as part of this project.

2.1 Petri Nets

2.1.1 Development of Petri Nets

In 1962 Carl Petri invented Petri nets (http://www.informatik.uni-

hamburg.de/TGI/mitarbeiter/profs/petri_eng.html). They have become a

widely used modelling technique for systems including Concurrent,

distributed and parallel. They have applications in other fields for example

manufacturing, where they model flexible manufacturing systems (Ciardo &

Trivedi 1993).

 Petri nets are mathematical descriptions of systems. They consist of four

basic elements: transitions, places, arcs and tokens. Transitions and places

are described by sets. Arcs connect transitions and places, and are described

by backwards and forwards incidence functions, often termed arc weights,

which relate to the movement of tokens between places. Tokens are

associated with places and the initial marking describes the initial number of

tokens on each place. Markings, the number of tokens on each place,

represent subsequent system states. Figure 1 displays the formal definition of

a Petri net.

2 BACKGROUND

 9

 PN = (P, T, I-, I+, M0)

 P is a finite set of places

 T is a finite set of transitions

P ∩ T = ∅

I- is the backwards incidence function

I+ is the forwards incidence function

M0 is the initial marking.

Figure 1. Formal Definition of Place Transition Petri nets

Transitions are the active elements of Petri nets, they can be enabled and

once enabled can be fired. The backwards incidence function determines the

number of tokens required on an input place before a transition is enabled.

For example for an arc from a place p1 to a transition t1 with an arc weight of

3, three tokens are required on place p1 before the transition is enabled. A

transition is enabled when this is satisfied for all input places. Upon firing,

tokens on all the input places are destroyed and created on all the output

places of the transition. The number of tokens destroyed is determined by the

arc weight; likewise the number of tokens created on each place is

determined by the forward incidence function. This basic Petri net structure

is often referred to as a Place Transition Net (Bause & Kritzinger 1995).

The usability of Petri nets is extended by the ability to express them

graphically as shown in Figure 2, which illustrates the readers-writers

problem. Graphical display simplifies net design, as nets can be constructed

using a graphical editor. Their graphical nature also enables Petri nets to be

animated allowing visual observation of how systems function.

2 BACKGROUND

 10

Figure 2. The readers writers problem. The readers-writers problem is a common
problem associated with concurrent access to files and data. For example a shared
database can be accessed by Readers, who obtain data from the database and Writers
who both obtain and write data to the database. Multiple readers can access the
database concurrently but writers must have exclusive access. Place p0 specifies the
number of Readers not reading, while p1 represents Readers that are reading.
Transitions t0 and t1 move readers between these states. Similarly place p3
represents the number of Writers not writing, p4 the number of Writers writing and
transitions t2 and t3, control movement between these two states. Place p2
represents a semaphore that controls access to the file/database.

There are now many variations of Petri nets they are mostly extensions of

Place Transition Nets. Variations include coloured Petri nets, which

introduce different coloured tokens, fluid stochastic Petri nets, which instead

of tokens associate a level of liquid with places and condition event nets, in

which places represent conditions, the presence of a token satisfying the

condition. Timed Petri nets introduce the concept of time.

Place transition nets lack the concept of time; it is not known at what time a

transition will fire. To perform quantitative analyses on the performance of a

Petri net, timing is required as part of the model. Time can either be

introduced into a Petri net by specifying sojourn times of tokens on places or

associating firing delays with enabled transitions. For the former, tokens

generated on places are unavailable for a set time. In the latter case, enabled

2 BACKGROUND

 11

transitions wait a firing delay before firing. Such nets are Timed Transitions

Petri nets.

Stochastic (Molloy, 1982) and Generalised Stochastic (Arjmor et al., 1984)

Petri nets are widely used Timed Transition Petri nets. Generalised Stochastic

Petri nets further split transitions into two subsets. Timed transitions fire

after random exponential firing delays, while immediate transitions fire

instantly once enabled. A weight is associated with immediate transitions, it

determines the probability of firing if multiple immediate transitions are

enabled in the same state. (Bause & Kritzinger 1995).

2.1.2 Hierarchical Petri Nets

Since Petri nets were not originally conceived of as hierarchical structures,

Hierarchical Petri nets are not widely supported by Petri net Tools.

By contrast, Process Algebras, such as Performance Evaluation Process

Algebra (Hillston, 1996, PEPA homepage: http://www.dcs.ed.ac.uk/pepa) are

mathematical calculi for modelling concurrent systems in a compositional

way. Compositional approaches allow the decomposition of systems into

smaller components, making it easier to model complex systems (and in

some cases also easier to analyse if the compositional nature of the system

can be exploited).

Providing support for hierarchical structures in Petri nets not only makes the

design process cleaner and simple (and more similar to approaches of

classical software engineering methodologies), but also allows for

compositional analysis techniques from the Process Algebra community to be

applied to Petri nets.

Process algebras are textual and based on process calculi, making them

relatively difficult to define, whereas Petri nets are easily expressed in a

2 BACKGROUND

 12

simple graphical way; thus the application of compositional approaches to

Petri nets could be advantageous to system designers.

2.1.3 Properties of Petri Nets

Petri nets exhibit properties, which can be verified. Liveness, safeness and

boundedness are three important properties of Petri nets.

A net is live, if it is not possible to reach a marking from which a transition

will never again be enabled. This means that whatever state or marking the

system is in, there will always be a firing sequence such that any transition

can be fired from that state. Live systems are free of deadlock and livelock.

Livelock occurs when a system is stuck in a subset of states that does not

include all transition firings, some functionality of the system can be

permanently disabled. Liveness is desirable in most systems because

deadlock is avoided and the complete system is always accessible.

A place is safe if in all possible markings, the number of tokens on the place

is never greater than one. A Petri net is safe if all places in the net are safe.

Safeness is of importance for places that represent conditions. There are two

possible states; the condition is either satisfied (token on place) or not

satisfied (place empty). It does not make sense for a condition to have more

than one token.

Boundedness generalises safeness. A place is k-bounded if in all possible

markings, the number of tokens on the place is never greater than k. Further

a Petri net is k-bounded if in all possible markings, and for all places, the

number of tokens on a place is not greater than k. Boundedness determines

that in all markings each place contains a finite number of tokens.

Boundedness is important to prevent buffer overflows in systems.

2 BACKGROUND

 13

2.1.4 Petri Net Analysis

Petri nets analysis ranges from the simple animation of firing sequences to

complex performance analysis. This section briefly describes some of the

more common analysis techniques. As an analysis module to perform

Invariant analysis is to form part of the project, it is described in more detail.

2.1.4.1 Animation – Token Game Animation

Token Game animation provides the simplest analysis of Petri nets. A Petri

net starts in its initial state with all enabled transitions indicated for the user

to select one to fire. When a transition is fired tokens are moved accordingly

and the process is repeated, another enabled transition can be selected. This

type of animation does not provide any definite information on the systems

but can be an effective way to view transition firing sequences.

Figure 3. Example of Token Game Animation. A) Place p0 has five tokens, so
transition t0 is the only enabled transition, which is indicated by its colour. t0 is
fired, removing one token from p0 and adding one to p1 as shown in B.
B) Place p1 now also has a token, so both transition t0 and t1 are enabled as
indicated.

2.1.4.2 Correctness Analysis

Correctness analysis techniques verify Petri net properties liveness, safeness

and boundedness. Invariant analysis and reachability tree analysis provide

techniques for verification of these properties.

2 BACKGROUND

 14

P invar iants

A p0 + p1 = 15
B p1 + p2 + 15p4 = 15
C p3 + p4 = 15

P invar iant Explanations

A states that the sum of the number of token on places p0 and p1 is
equal
to fifteen in all reachable markings of the net. i.e. the total number
of readers is constant

B Similarly states that sum of tokens on p1,p2 and 15 times p4 is
always equal to 15.

C The sum of tokens on p3 and p4 is always equal to 15. i.e. The total
number of writers is constant.

 T invar iants

D t0,t1
E t2,t3

T invar iant Explanations

D The firing sequence t0,t1 returns the system to the marking it was in
before the firing sequence. In this case moving a Reader from the
state of not reading to reading back to not reading or from reading,
to not reading back to reading.

E This sequence performs the equivalent as D but for a writer.

 Boundedness, L iveness Proper ties of the system

Bound – the Petri Net is covered by P invariants because all of the places in
the net appear in at least one P invariant. This means that the net is
bounded.

Boundeded & L ive, - A bounded and live net is covered by T invariants.
This net is covered by T invariants, however this doesn’ t infer that the net is
bounded & live.

Figure 4. The P and T invariants of the Reader-Writers Petri net. This figure gives
the P and T invariants of the Readers-Writers Petri net (Figure 2). An explanation of
each invariant in relation to the Readers-Writer example is also given.

2 BACKGROUND

 15

Reachability analysis generates the reachability set (or tree), of a Petri net.

The set starts at the initial marking, with a new marking created for each

transition. This is repeated for all new markings until all possible marking

have been covered. It is then possible to determine if the net is bounded. If

so it is also possible to determine if the net is live and to identify home states.

Invariant analysis also identifies if a net is bounded and live. This is done by

calculating both P (Place) and T (Transition) invariants. P-invariants occur

where for all possible markings the sum of the marking of a group of the

places remains constant. Transition invariants identify order independent

transitions firing sequences that leave a net’s marking unchanged (i.e. From a

marking M a firing sequence is followed to return the net to marking M).

To perform Invariant analysis the incidence functions of a Petri net are

converted to incidence matrices. The backwards incidence function is

converted to the backward incidence matrix (C-) and the forwards incidence

function to the forward incidence matrix (C+). The incidence matrix C is the

result of subtracting C- from C+ (C = C+ - C-). Transition firing can then be

expressed using the incidence matrices. It is then possible to express firing of

transitions with the incidence matrices as described below.

From a marking M a firing sequence f is followed, where f is the vector of

the number of times each transition is fired in the firing sequence, the

resultant marking M` can be described as:

 M` = M + C f

Thus if M` = M, (i.e. the sequence returns the net to the same marking)

then C f = 0, thus f is a T invariant which leaves the marking M unchanged.

If equation 1 is multiplied by vT ∈ n gives equation 2 below:

 vT M’ = vT M + vT C f

2 BACKGROUND

 16

In this case, if vT C = 0 then vT M’ = vT M, ∀M ∈ R(PN, M) where

R(PN,M) is the set of all possible reachable markings given an initial

marking M. v is a P invariant, P invariants can be found be solving vT C = 0.

From P and T invariants it is possible to determine properties a Petri net, such

as boundedness and liveness. A Petri net is bound if it is covered by positive

P-invariants. This means that all the places of the Petri net must appear in at

least one of the p invariants. The Readers-Writers example Petri net (Figure

3) is bounded as described in figure 4.

A bounded and live Petri net is covered by T invariants. This does not infer

that a net covered by T invariants is bounded and live, however it can be

concluded that a net that is not covered by T invariants is not bounded &

live. The net in the readers-writers example is covered by T invariants.

Other analysis techniques such as reachability analysis must be performed to

identify if the Petri net is bounded and live.

2.1.4.3 Performance Analysis

Performance analysis is possible for Petri nets that incorporate time.

Performance analysis can provide statistics such as the mean number of

tokens on a place, the probability of being in a subset of markings, the

probability of a transition firing given that it is enabled and the throughput of

a transition.

Markov chains can be obtained from a Petri net’s reachability graph. This

enables analytical performance statistics to be obtained. Simulation can also

be used for Performance analysis, however results are not exact and many

simulations are required to have a high confidence in the results.

2 BACKGROUND

 17

2.2 Petri Net Editors

There are approximately forty Petri net Tools listed in the Petri net Tools

Data base (http://www.daimi.au.dk/PetriNets/tools/db.html). The

functionality provided varies from the most basic of editors to those

providing sophisticated analysis capabilities. A sample of the editors

available have been obtained and investigated to identify the capabilities

common to Petri net Editors. The editors studied include DaNAMiCs,

HPSim, INA, VisObjNet144 and the PetriTool The following sections

discussion the features provided in these and other Petri net tools. The

sources of the other editors referenced are provided in the tools references

section of chapter 7.

2.2.1 Basic Features

2.2.1.1 Platforms

Of all the editors available the majority run only on UNIX operating systems,

a few operate solely on Windows, while fewer still run on both Windows and

Linux operating systems. Tools that are portable are mainly implemented in

Java. Portability of the tool is desirable because few tools run on multiple

operating systems.

2.2.1.2 Editing capabilities

The majority of tools provide a graphical editor for Petri net design, (user

interfaces displayed in figures 5 and 6). A few of the tools such as INA and

the Model Checking Kit are text based. These tools provide greater support

for Petri net analysis rather than design.

The graphical editors investigated all allowed the user to add places,

transitions, arcs and tokens to Petri nets and provided features to edit and

remove these components. Some provided further options such multiple

node arcs, zooming, and printing.

2 BACKGROUND

 18

Figure 5. A screenshot of the HPSim Petri net editor tool. HPSim is a Windows
based tool providing support for Place Transition nets and Stochastic Petri nets. It
offers token game animation and simple performance analysis but no correctness
analysis features. Properties of Petri net components can easily be edited using the
table to the left of the user interface.

Figure 6. VisObjNet144 Petri net Editor Tool. VisObjNet provides similar
functions to HPSim, Place Transition and Stochastic Petri nets are supported. Token
Game animation, simulation and performance analysis are all incorporated in the
tool. Like HPSim Petri net component properties can be edited using a table.

2 BACKGROUND

 19

2.2.1.3 Petr i Nets Suppor ted

All the editors available support Place Transition nets, which is expected as

most Petri net types are extensions of Place Transition nets. Some tools are

designed for particular net types, for example CPN which supports coloured

Petri nets. Due to their extensive use for performance analysis Stochastic

Petri nets are widely supported; at least fifteen tools support them.

2.2.2 Hierarchical Petri Nets

A few Petri net tools provide support for Subnets. Investigation of

DaNAMiCS identified that hierarchical models could be designed via the

introduction of subnets. Subnets added have to use an existing file and

appear on the screen as a blank box (figure 7). Interaction points can easily

be chosen but it is difficult to specify which interaction point arcs placed into

the subnet should be connected to. To move between levels the respective

files for each level of the net have to be opened separately, making it difficult

to switch between them and identify how the nets interact (figure 7). It was

not possible to investigate any other tools that support Hierarchical Petri nets,

however THORN/DE (Schof, Sonnenschein & Wieting, 1995) provides

hierarchical Petri net support similar to that provided by DaNAMiCS.

The tools investigated do not provide a suitable graphical representation of

hierarchical Petri nets. A representation that explicitly illustrates interaction

points and how they are connected to higher levels is required to simplify

hierarchical Petri net design. Such a representation should also allow simple

switching between different levels of the Petri net without the requirement of

opening the files associated with each subnet and editing them independently

of the other levels of the net. Provision of such a representation is a central

aim of this project.

2 BACKGROUND

 20

Figure 7. A DaNAMiCS hierarchical Petri net. DaNAMiCS provides simple
support for Hierarchical Petri nets. In this example a subnet has been added to a
Petri net, it is displayed as a white filled box. Arcs can be placed between
components of the Petri net and a subnet however it is not clear how to do this.
Upon connecting an arc from the place to the subnet shown above, a dialog (shown
in figure) appears to select the component of the subnet to connect the arc to. It is
not possible to visualise the interaction between the two levels of the Petri net.

2.2.3 Analysis

There is much variation in the analysis options provided by Petri net editor

tools. However, in all cases these analysis features are built into the tools.

Users are limited by the analysis features provided in the tool they use. It

may be necessary to use multiple tools to perform all the analyses required,

this can be problematic if file formats are not interchangeable (see 2.2.4). As

analysis features are built in it is not possible for users to easily specify their

own analysis methods. This may be desirable if unusual systems are being

modelled or a poorly supported Petri net type is being used.

2 BACKGROUND

 21

An editor incorporating an open architecture allowing analysis modules (that

implement a simple interface) to be dynamically loaded would provide a

solution to these problems. Users can load modules performing the analysis

they require and could even implement their own modules to perform

specific analyses. The development of such an open architecture is an

important aim of this project. The aim is that modules once dynamically

loaded will add items to a menu of the user interface to run their analysis

features.

2.2.3.1 Invar iant Analysis

Invariant analysis is present in a few of the tools available. The output of

such modules is very similar, for example DaNAMiCs, displays P-invariants,

T-invariants, invariant equations and the incidence matrix for the analysed

Petri net as shown in the figure 8. It also reports if both P and T invariants

cover the net, indicating if the net is bounded and live and bounded. The

display of P and T invariants are left in a matrix form from which the

invariants must be interpreted. It would be clearer to express the P and T

invariants in a format similar to the P invariant equations (see figure 8).

Figure 8. DaNAMiCS Invariant Analysis Output for the Readers-Writers Petri net.
This figure DaNAMiCS display of invariant analysis results. P and T invariants, are
displayed in the bottom two areas of the dialog, they are displayed in matrix formed
and need interpretation. The P invariant equations are displayed more clearly.

2 BACKGROUND

 22

2.2.4 File Formats

Petri net tools tend to use their own file format. This is very restrictive if

users wish to port Petri nets and use them in different tools to make use of

different analysis and simulation capabilities. There have been some

attempts by the Petri net community to develop a general interchange file

format (Bastide, Billington, Kindler, Kordon & Mortensen 2000).

A number of groups have proposed possible alternate file formats, all of

which are XML (extensible markup language) based. The use of XML

should make file formats simple to parse particularly as some languages

(Java for example) provide support for XML parsing. Most of the proposed

formats attempt to separate basic net components such as places and

transitions, from Petri net type specific elements such as inhibitor arcs.

The Petri Net Markup Language (Jungel, Kindler & Weber 2000) is one of

the proposed file formats. A general section contains all the Petri net type

independent data (i.e. places, transitions and arcs), while a separate Petri net

Type Definition specifies specific details for different Petri net types. Other

proposals include, the use of style sheets to separate style and content

(Mailund & Mortensen 2000) and a two level data definition language

(Valente & Gribaudo 2000).

A generic file format has yet to be chosen, so this project will aim to use a

file format based upon the current proposals but extended to provide support

for Generalised Stochastic and hierarchical Petri nets. This will ensure the

file format is close to any interchange format eventually chosen.

3 DESIGN

 23

3 Design

The first section of this chapter provides an outline specification summarising

the aims and features intended for the Petri net editor. Subsequent sections

discuss programming language choice, object oriented class structures, open

architecture design and file format design.

3.1 Outline Specification

The two previous chapters have stated the aims of this project and the

features present in Petri net Editors. These have been combined to provide

an outline specification of the Petri net editor tool, that this project aims to

develop.

3.1.1 General Properties

The tool should be portable. Many existing tools are operating system

specific – in fact most are limited to specific brands of UNIX (e.g. Linux,

Solaris), so it would be beneficial to operate on a wide range of Windows and

UNIX platforms.

3.1.2 Editor Properties

The tool should provide the basic features necessary to design and edit a Petri

net. Further features such as zooming and printing should be considered

optional, and could be added at a later date. Support for hierarchical Petri

nets (3.1.3) and an open architecture (3.1.4) are of greater importance to the

project. Places, transitions and arcs should be able to have their properties

3 DESIGN

 24

such as token number, firing rate and weights modified. It should be possible

to change the position of components on the net and to have the ability to

delete components.

3.1.3 Hierarchical Petri Net Properties

The tool should support hierarchical Petri nets such that interactions between

different levels are explicit, and can be switched between effectively. For

example clicking on a subnet could cause it to be loaded and displayed by the

editor. Interaction points could be identified by painting them a different

colour and by displaying them on the outside of the subnet, to show how the

Petri net interacts with subnets.

 When subnets are introduced users should be able to select what Petri net the

subnet contains. There should further be the choice to save the subnet using

the already selected file or to save it under a different name specifically for

use in the current design.

3.1.4 Open Architecture

The tool should provide an open architecture for the dynamic loading of

analysis modules. The interface required for such modules should be simple,

for example using a commonly named function to execute and run the

module.

An analysis module, for invariant analysis will be implemented to illustrate

the capabilities of the open architecture. The invariant analysis module

should provide data on both P and T invariants and the boundedness and

liveness of Petri nets, similar to that provided by DaNAMiCS.

3 DESIGN

 25

3.1.5 File Format

A file format closely following proposals for an interchangeable file format

(see 2.2.4) should be designed. It should support Hierarchical Petri nets, and

should enable tools that use this file format but do not support Hierarchical

Petri nets to parse it correctly as a single level Petri net.

3.2 Java Programming Language

For the implementation of an object-oriented tool, the two main choices of

programming language are C++ and Java. Java is more suitable for this

project. Unlike a C++ implementation a Java implementation will be

portable operating on multiple platforms. Java also provides Reflection (See

section 4.4) a way to load Java classes into an executing program, which will

be necessary for the design of the open architecture. Java also offers XML

support, which will be useful for implementation regarding the file format.

Java is the clear choice for the implementation and the following sections and

chapters will assume this.

3.3 Class Design

This section discusses possible class structures for the Petri net Editor,

starting with the basic classes required to represent a Petri net.

3.3.1 An Object Oriented Petri Net

How should the components of a Petri net be modelled as classes in a Petri

net Editor? Places, transitions and arcs, are obvious choices for classes.

3 DESIGN

 26

Likewise subnets should be another class. Figure 9 displays a class structure

design representing a Petri net as a group of classes.

An abstract class, PetriComponent, forms a base class from which all other

Petri net components, inherit. PetriComponent will provide data members

such as position and name, and functions for adding and removing

components from a Petri net. Tokens and arcs inherit directly from

PetriComponent. Transitions, places and subnets on the other hand, share

more features in common that with arcs so they inherit from

SolidPetriComponent. For example these components have dimensions, and

can be connected to arcs.

The classes Timed and Immediate transitions provide the two subsets of

transitions present in Generalised Stochastic Petri nets. However their

similarities are contained in Transition, which they both extend.

Tokens are described as a class, but they could also be an attribute of the

Place class. They have been assigned a class because it will be simpler to

manipulate token position, addition and removal via a separate class, rather

than as part of the Place class.

3.3.2 Graphical User Interface Design

The graphical user interface requires all the features that any typical graphical

user interface requires, such as menus and toolbars. The section briefly

describes the elements that will make up the user interface.

The design or drawing area will form the largest area of the user interface, it

is here that Petri nets will be created and edited. To perform functions in the

design area one of the options such as transition or edit will be selected.

These options will be displayed in a toolbar, preferably adjacent to the

drawing area. A further toolbar will provide file opening and saving options.

3 DESIGN

 27

3 DESIGN

 28

A status bar will be placed at the bottom of the user interface to provide

information to the user.

Some editing features such as changing arc weights or transition firing rates

cannot be carried out in the drawing area alone, because input needs to be

obtained from the user. Dialogs are often used to obtain such information,

however it would be inconvenient if a dialog appeared every time a small

feature needed changing. It is simpler to place a table in the user interface

that can display the required details and allow the user to edit them. This

method is used effectively in other Tools, such as HPSim and VisObjNet (see

figures 5 & 6).

The GUI will provide features to edit Petri nets, such as moving the position

of components and modifying components’ properties such as token number

and weights. Figure 10 displays a possible class structure for the editing

features. A different class encapsulates each of the different editing

features. These classes all extend the same base class, EditClass. This class

will provide functionality to interact with the design area. This design will

simplify the addition of further editing features because they can be added by

the implementation of a new class, extending EditClass.

Figure 10. The Editing Classes of a Petri Net Editor. This OMT diagram provides a
possible class structure for classes implementing the editing features of a Petri net
editor. Each editing class encapsulates a different editing feature, for example
EditArcs will be used to modify arc positions and weights, while EditSubnet, will
provide operations to edit a subnet and its interaction points. Each of the
editingClasses extends the same base class, EditClass. The class will have abstract
functions to respond to the mouse being pressed, dragged and released. Each of the
editing classes will have to implement, these functions. This design will simplify
the addition of further editing features, which can be implemented in a new class,
which inherits EditClass.

3 DESIGN

 29

The Java implementation for the user interface is described in detail in

chapter four section 2 (4.2).

3.3 Open Architecture Design

The open architecture design must allow analysis modules that perform

differing analysis operations to be dynamically loaded and executed by the

editor. Modules have to follow an interface, to ensure that they implement

the functions that the editor will invoke to run their analysis functions. The

interface design is simple so as not to restrict the varying analyses that

modules can perform. The simplest interface requires two functions, one to

return the name of the module and another to execute analysis.

Once dynamically loaded analysis modules will need to obtain the details of

the Petri net being edited. It is simplest if the Petri net is saved to a set fi le

name, which can be specified in the interface. Modules will then know

where to locate the file associated with the Petri net they are to analyse.

3.4 File Format Design

None of the proposed Petri net interchangeable file formats (see 2.2.4)

support hierarchical Petri nets. It was therefore necessary to design a file

format that closely follows the proposals but also provides a format to save

hierarchical Petri nets.

A natural way to save a hierarchical Petri net is for each net to have its

contents saved in a separate file. Where a Petri net includes a subnet, the

subnet can be specified by providing the file name for the subnet. However

if the file format is to be used by other Petri net editor tools, that don’ t

3 DESIGN

 30

support hierarchical Petri nets, files couldn’ t be transferred between different

tools. It was therefore necessary to design a file format that would

hierarchical Petri nets to be flattened and saved as a single file, making them

more accessible to other tools.

One of the proposed Petri net interchange file formats, The Petri Net Markup

Language (PNML) provides a simple XML format for specifying places,

transitions and arcs, a simple example is shown in figure 11. This format

formed the basis of the file format that was designed. The format for the arc

was not altered. The format for places and transitions needed modifying to

identify if they are interaction points. An interaction tag was added to

distinguish components as interaction points (figure 13– the transition is an

interaction point). The transition format required further modification

because the PNML does not allow for timed and immediate transitions

present in Generalised Stochastic Petri nets. Attributes for type and weight

were added for immediate transitions and type, distribution and rate for timed

transitions (figure12).

A new structure had to be designed to accommodate subnets. A subnet tag

was added (figures 13 & 14). The name of the subnet is provided as an

attribute of this tag. For subnets that relate to different Petri net files, a

location tag provides the location of the file (figure 14). If a High level Petri

net is saved in a flattened form, the contents of the subnet are contained

within a contents tag (as shown in figure 13), which is nested within the

subnet tag. Also nested within the subnet tags are graphics and position tags,

which are used in the same way as for transitions and places to specify the

subnet’s location. Offset tags are also nested within the subnet tag, they

specify the locations of the subnets interaction points when they are shown

on the higher-level net.

3 DESIGN

 31

���������
	�����
� ����������������������� ����� !����#"�$&%
')(��*��+
�-,.�.�/�0+
 132�4�5�6�7
8 2#8 9:6/8 ;=<�>�?A@3B�C

 DFE�G�H�I.J.K L�M�N
 O-PRQ SUT V#T Q�WYX[Z�\^]&_a`ab[c�`Ad�egf&h[i.j

 kmlon�p�q�rts.u v�w x
 y-z�{.|~}��

 �&���.���t�=�[���F�m�A���.� �.�=�
 �F�������.�t� ��� �

 �F�R���¡ £¢R¤&¥[¦�§)¨£©mªa«[¬�ª#�®[¯[°t±
 ²m³
´�µ�¶�·.¸.¹ º�»�¼

 ½m¾R¿ À Á~Â=Ã
 ÄmÅ£Æ�Ç�È�É Ê
Ë Æ#Ë Ì�É=Í
 Î-Ï Ð Ñ Ò�Ó/Ô Õ=Ö�×)Ø=Ù3Ú�Û

 ÜFÝ�Þ�ß�à.á.â ã�ä�å
 æ-çRè éUê ë#ê è�ìYí[î�ï#ð[ñgñ3òaó[ô�òöõ=÷=ø3ù&ú û

 ümýoþ�ÿ�������� �
	��
ü���������
 �����������������! #"%$�&�'�(�)�*
 +�,#-�.�/�0�1 2
3�4

 5�68797;:=<8>�?A@�BDC�E�F�GIHAJ�G%K�LAM�NAO�P
 QSRUTWV�X�Y�Z�[\
]�^

 _S`8a�b�c�d�e
 f�gih�g jkg l�minol�prq8gsh�tSu

 v�w�x�y�z�{�|~}!�#�%�����������
 ���#��������� �
���

 ���8�9�;�=�8���A�����!�#���I�A ��%¡�¢�£�¤A¥�¦
 §S¨U©Wª�«�¬��® ¯
°�±

 ²S³µ´i¶�´ ·k´ ¸º¹i»�¸�¼¾½8´i¶�¿AÀ
 ÁSÂ8Ã�Ä Å�Æ
Ç�È
 É�Ê�Ë�ÌÎÍ Ï�Ð�Ñ�Ò�Ó~ÔoÕ
Ö�×WØ�Ù
ÚWÛ�ÔÝÜ=Þ~ßáàrâ�ãÝä�å8àçæ�ßDè�é�ê
ë

 ì�íWî�ï�ð�ñ�ò ó
ô�õ
 öø÷8ù�úüû ýkû ù�þ ÿ �������	��
��������������
 ������� � !�� �#"%$&�'�(*),+�-�./�-1032254�6�7

 8�9;:�<>=#?A@�B CED�F
 G�HJILKEM NOHJPRQ�H S#IUT

 V�W#X�Y[ZA\,]_^�`�acb#d�e[fAg,h
 i5j�k>l#m�nAo pEq�r

 s5t�uvuxwzy�{�|}�~��	�U��������c�#������A�
 �����U�>�#����� �E�L�

 ���R�J���E�R�O�J�R �� ¡3��¢
 £�¤;¥#¦>§�¨

 ©�ªL«A¬�¯®±°

Figure11. An example of a Petri Net Markup Language File. The above
sample file specifies a place, a transition and an arc from the transition to the
place. The Petri Net markup language allows an name, position and text
position to be saved for transitions, while places also have their initial
marking (token number) saved. The source and target of an arc, its start and
finish positions and the arc weight are saved within the Arc tag.

3 DESIGN

 32

a)
 ²�³�´>µ#¶L·�¸ ³�¸ ¹#¶º¸ »,¼¾½O¿1À�Á*Â>Ã�Ä�ÅUÆ�ÁxÇ;ÈÊÉÌËUÍ�Î¾Ï#Ð Ñ�Ò�ÓÔÐJÕ�ÖLÒ�Ð ×3Ø#Ù�ÎÛÚ#Ü�ÝUÞ�ß,Ú	ß#à;áãâ	äÊåæ>ç�èÔéUê åcë�ìÊí�îzï

 ð5ñUò>ó#ô�õ�ö ÷EøLù
 ú�û�ü�ý þ ÿ�þ ü������ ���
	�������������
�����

 �������! �"$#�% &('*)
 +-,/.�021�3

 4
5�6�798$:<;�=?>A@�B�C�D�E F�G<H
 IAJ�K!L�M�N$O P(Q*R

 SATVUWUYX[ZV\
]�^�_a`[b�c�d�e�cgf(h�i�j$k
 l�monqp!r�s�t�u v(w/x

 y�zV{*|*}2~<�
 ���(�������*�o� �g� ���<�

���

�����!���*�o� �g� ���2� �<���Y�?�����W�� V¡q¢���£¥¤¦¤¨§�©�£«ª�¬§�®°¯²±�³ ´�µV¶·�®�¸�¹¥º�»(¼
 ½A¾q¿!À�Á�Â�Ã Ä(Å/Æ

 Ç-ÈVÉ*ÊÌË ÍgË É�Î�Ï�Ð�Ñ�Ò�ÒqÓ�Ô�Õ�Ö�Ôg×�ØAÙ�Ú�Û
 Ü�Ý�Þ�ß!à�á$â�ã ä(å*æ
 ç-è/é�ê2ë�ì

 í
î�ï�ð9ñ$ò<ó�ô?õAö�÷�ø�ù�ú û�ü<ý
 þAÿ��������	�
���

 �������������������! �"#"�$&%('�)�%!*�+-,/.�0�1
 24365-7�8�9�:�; <�=?>

 @4A�B�C�DFEHG
 I4J�KML�N�O�P6Q KRQ S�OHT

 U4V?W	X�Y[Z]\

Figure 12. XML format for Transitions. a) The format for a timed transition.
Attributes have been added to the transition element. Type identifies that the
transition is timed, attributes also identify the distribution and firing rate of the
transition.
 b) The format for an immediate transition. The type is set as immediate and the
weight is specified using the weight attribute.

3 DESIGN

 33

 ^�_a`�b[ced�f�g�h6i j�k�l�manporq-msf�k�t�j�u�ivk?wHl�myx�z�{e|~}-m�_��
 �������[���

 ���6�-�����e�s� �H�������#���H���a�&���
 ���- �¡�¢�£�¤ ¥�¦?§

 ¨�©�ª�«¬ ®R¬ ª�¯±°�²�³µ´�¶#¶�·(¸�¹�·aºp»�¼�½�¾�¿
 À�Á6Â Ã6ÄÆÅÈÇ�ÉRÊ4Ë&Ì�Í-Î�Ì!Ï�Ð&Ñ�Ò	Ó

 Ô4Õ×Ö�Ø�Ù�Ú	Û�Ü Ý�Þ�ß
 à�á�â�ã�ä~å�ãeä~æ�ç

 è&éMê�ë�ì�í6î éRî ï�ì[î ðHñ�òôó�õ&ö/÷�ø4ùú-û�ö�ü�ýÿþ�� ������ �
	��������	�� ������������� �"!��#! $&%�')(+*-,/.�0�1 2�*4365+7�8:9
 ;=<�>@?�ACBCD E&F�G

 HJILK�MLN OPN K�QSR)T�UWV�X�Y"Z)[�Y:\�])^�_)`ba
 cedgf�h/i�jCkbl m&n�o
 pJqsrCtvu w

 x�y�zC{ |C}6~e�:���e�:���C� �C�6�
 �=� �/���C�C� �&�s�

 �=���@�/�&���#�)�����
�)�")¡��£¢&¤)¥)¦b§
 ¨e©gª�«/¬�b®C¯ °&±�²

 ³e´�µ�¶�·¹¸6º
 »�¼�½�¾¿�À/Á�Â:¾P¼ Ã�½ÅÄbÆ

 ÇeÈ&É�Ê@Ë�Ì�ÍÏÎ É�Î Ð�Ì6Ñ
 ÒJÓ�Ô Õ�Ö&×ÙØ Ú�Û�Ü�Ý6Þ�ßáà

 â=ã�ä@å�æCçCè é&ê�ë
 ìJíLî�ïLð ñPð î�òSó)ô�õ4ö ÷)ø=ù"ú)û�ù4ü�ý�þ�ÿ����

 �����
	������� �����
 ��������� �

 !#"�$�% &�')(+*),.-
/10�2�3 4�5)6
 798 :�;�<�=�> ?�@�A

 B9CEDFD�G�HEI�JLKNMPO)QLRTSTULVNS1W�X�X9YLZ�[
 \�]�^
_�`�a�b�c d�e�f

 g�hEi�j�kml)n
 oNprq�p stp u�vrwxu�y{zEp|q�}L~

 �#����� ���)�T�.�
�1����� ���)�
 �9� ��������� �����

 �9�E�F�����E���L N¡P¢L£)¤T¥T¦L§N¥1¨�©9¨�ªL«�¬
 �®�¯
°�±�²�³�´ µ�¶�·

 ¸�¹»ºr¼�º ½¾º ¿�ÀrÁN¿�ÂÄÃ�ºr¼�ÅLÆ
 Ç�È�É�Ê Ë�ÌÎÍ)Ï
 Ð9Ñ�Ò�ÓÕÔ Ö)×NØÚÙ�Û#ÜNÝ�Þ�ß
à�áÎâ ãNÜ�ä1åçæ+è{é�ê�ë�ìEèîí.æPï)ð#ñÎò

 ó9ô
õFö�÷�ø�ù ú�û�ü
 ý�þ ÿ ��� ��� ÿ��	��
������������������������
 �! �"$#�% &�% "�'	(�)*,+.-�/10�2�340,576.819;:$<

 =7>@?BADC�EGF�H IKJ$L
 MNPO$QSR�TUNPVXWYN Z�O\[

]�^�_G` aGb.cd�eBfhg�iGj kGl.m
 n�o\pDq�rGsGt uKvxw

 y�z|{}{D~K�|�;������1�����4�Y�1�����
 �7�@�B�D�����G� �K�$�

 �7�X�P�$�K���U�P�¡ �� ¢G�B£
 ¤7¥¡¦�§}¨$©

 ª7«@¬K�®�¯�°±®�¯�²$³
 ´�µ|¶·¶D¸K¹|º�»�¼½¿¾BÀ1Á�Â�Ã�ÄÂ�Å�ÅBÆ1Ç�È�É

 Ê7Ë@Ì¡ÍBÎ�Ï|Ð|ÑhÒ
 Ó7ÔxÕ�ÖG×ÙØÛÚ

Figure 13. A “ flattened” Petri net file containing a single subnet. The subnet is the
Petri net specified in figure 11. Its contents are listed between the <contents> tag.
The offset tag just before the subnet end flag (</subnet>) specifies the location of
the subnet’s transition (which is an interaction point), when it is viewed at the higher
level.

3 DESIGN

 34

 ÜÝ,ÞBßÙàXá�â�ãDä¡å æ�ç�èé,ê±ëíì\éîâGç$ïKæ$ð�åPçxñ.èé�òBó�ôXõ�ö\é÷Ý$ø
 ù!úGûGüÙýÿþ

 ����� ���	��
� ������������������� �"!
 #�$&%('�)�*,+ -/.	0

 13254	687 9:7 4�;=<�>�?A@�B�B�CED�F�C�GIH�J�KML	N
 O�P�Q R�SUTWV�X:Y[Z \^]`_�\ba�c d�e,f

 g[hji&k(l�m,n�o p/q	r
 s�t u	v/w5x:y u�z|{}y~t �`���������`���	�`�I����� �~�M��� �������[���I���`���������¡ =�/¢��`�����£ �¤���`�&�`¥��M�¦� £ ��§ �M����¨�©M�¦�¤ªM«,¬
 �®5¯°¯(±/²5³M´�µ�¶¸·&¹ º�»E¼�½�»¿¾�¾&À Á�Â,Ã

 Ä[ÅjÆ�Ç&È,É5Ê5ËAÌ
 Í[Î�Ï,Ð�ÑÓÒÕÔ

Figure 14. A non flattened Petri net File. This is the equivalent non flattened file
format for the flattened file format of figure 13. The subnet contents are not listed in
this file but the location of the subnet file is given from which its contents can be
obtained.

4 IMPLEMENTATION

 35

4 Implementation

The first section of this chapter will address the implementation of the Petri

net classes and their incorporation into the Graphical user interface. The

following section describes the user interface implementation in more detail.

The third section discusses implementation of the open architecture followed

by the implementation of the invariant analysis module. For clarity the

implemented classes, Java classes, data members and functions are printed in

a Cour i er font, functions are distinguished by f unct i onName()

irrespective of their number of arguments.

4.1 Implementation of Petri Net Classes

4.1.1 Implementation of PetriComponent

Possible Petri net class structures were described in the previous chapter,

Petri net components were designed to all inherit a class, PetriComponent.

This section describes the implementation of the Pet r i Component class.

The Pet r i Component class incorporates the features common to all Petri

net components. Petri net components all have a position, name and text

position, so these are provided as data members of Pet r i Component . Petri

net components also need to interact with the design area (see 4.2.2) so

functions (st ar t Pos() , set Posi t i on() and f i ni shDr aw()) were

added to Pet r i Component to provide implementation to do this. Finally

Petri net components need to be able to paint themselves and when being

saved write their details to file, so the functions pai nt Component () and

wr i t eToFi l e() were also added to Pet r i Component. These main data

members and functions of Pet r i Component are displayed in figure 15.

4 IMPLEMENTATION

 36

publ i c abst r act c l ass Pet r i Component i mpl ement s Obser ver {

 Coor di nat es posi t i on;
 St r i ng name;
 Coor di nat es t ext Posi t i on;

 publ i c abst r act voi d st ar t Pos(Coor di nat es st ar t Pos, Dr awer d) ;
 publ i c abst r act voi d set Posi t i on(i nt x, i nt y) ;
 publ i c abst r act voi d f i ni shDr aw(Dr awer d) ;
 publ i c abst r act voi d pai nt Component (Gr aphi cs g) ;
 publ i c abst r act voi d del et eComponent (Dr awer d) ;
 publ i c voi d wr i t eToFi l e(Fi l eWr i t er out) {
 }

 ……………….
}

Figure 15. The main data members and functions of the PetriComponent class.
Position, stores the position of the component in the design area. Likewise the
textPosition stores the position that a component’s name is displayed relative to its
position. Name stores the name of a component. StartPos() is called to set the
initial position of a component when the mouse is pressed (See next section),
setPosition() is called when the mouse is dragged and finishDraw() when the mouse
is released. PaintComponent(), provides implementation to paint the component and
deleteComponent() provides implementation to delete Petri Net Components.
WriteToFile() is implemented to write a component’s details to file.

The individual characteristics of Petri net components also need to be

represented, the next section considers what Petri net components need to

know about the other components of a Petri net and how this was

implemented.

4.1.2 Implementation of An Object Oriented Petri Net

What do the components of a Petri net need to know about each other?

Figure 9 demonstrates the relationships between the Petri net component

classes but how should these be implemented? Transitions are the active

component of a Petri Net, they need to be able to determine if they are

enabled and cause change when they are fired. To identify if a transition is

enabled it must therefore be aware of the arcs that input into it. The arcs in

turn then need to be aware of the places to which they are connected to

4 IMPLEMENTATION

 37

identify if there are sufficient tokens on the place. Alternatively transitions

could also be aware of the places that the arcs are connected to. However

such a design introduces redundancy because both arcs and transitions would

need to store references for the places that arcs connect to. Similarly when

firing, transitions need to know the output arcs connected to them and in turn

the arcs must be aware of the places to which they are connected.

For this reason, arcs (implemented in the Ar c class) contain a reference to

their source and target, while the Tr ansi t i on class has lists (Vector class

used) of references to input and output arcs. A single list is not used because

the operations performed on input and output arcs are always different, so it

is more efficient than working over a single list and testing each arc to

identify if it inputs or outputs to the transition.

From this perspective places do not need to be aware of the arcs that connect

them, because they do not perform any operations on the arcs connected to

them. This arrangement would be suitable in some cases, however as a

graphical editor is being designed it is not. The graphical editor allows

places and other components to be moved and manipulated; so when a place

is moved, the arcs connected to it must also move. Places therefore also

contain lists (Vector class used) of input and output arcs.

As described in Design, places and transitions share similarities such as

dimensions and the ability to have arcs connected to them. These similarities

were encapsulated in the Sol i dPet r i Component class (extends

Pet r i Component), which provides implementation to add and remove arcs

and to modify component position (see figure 16).

The Token class inherits from Pet r i Component . Places need to be able to

access the tokens on them, so they are stored as elements of a Vector,

t okens , in the Pl ace class. A separate data member to store the number of

tokens is not required as this can be obtained from the size of the vector.

4 IMPLEMENTATION

 38

public abstract class Sol i dPet r i Component ext ends Pet r i Component {
 Vect or out put Ar cs;
 Vect or i nput Ar cs;

 Di mensi ons si ze;

 Edi t Poi nt nor t h, east , sout h, west , cent r e;

 bool ean i nSubnet ;
 bool ean i nt er act i onPoi nt ;
 Coor di nat es net Posi t i on;

 publ i c voi d r emoveAr cs(Dr awer d) { }
 publ i c voi d addEdi t Poi nt s() { }
 publ i c Vect or get Edi t Poi nt s () { }
 publ i c voi d updat e(Obser vabl e obs, Obj ect obj) { }
 publ i c bool ean i sOn(Coor di nat es c) { }
 publ i c voi d addAr c(Ar c a, bool ean i nput) { }
 publ i c voi d updat eAr cPosi t i ons() { }
 publ i c voi d set I nt er act i on() { }
 publ i c voi d set I nt er act i onPosi t i on(I nt er act i onPoi nt i p) { }
 publ i c voi d swi t chPosi t i on() {
 }

 ……………………………….
}

Figure 16. The main data members and functions of the SolidPetriComponent
Class.

4.2 Graphical User Interface Implementation

The first section provides a brief overview of the swing classes used and

extended in the design of the user interface. The subsequent section

describes how, these components interact with the Petri net classes described

in above.

4.2.1 Swing Components

The Java swing library was used to implement the Graphical User Interface

(GUI). Figure 17 displays the class structure used for the GUI

implementation. The frame of the user interface is implemented in the

Edi t or Fr ame class, which extends JFr ame. The design area is

implemented in Dr awer , which extends JPanel . A further JPanel ,

4 IMPLEMENTATION

 39

j Panel 4, contains the class j Tool Bar 1, which extends JTool Bar and

implements the file toolbar. JPanel 2 contains JBut t ons, which are used to

select editing options. An instance of Jt abl e is used to provide the editing

table, which uses the abstract table model Tr ansi t i onTabl eModel .

A JSpl i t Pane instance covers most of the user interface area. There is a

Jscr ol l Pane on each side of the splitPane, which contain the design area

on the left and the editing table on the right. This enables the size of the

design area and table to be modified and makes both of them scrollable.

A JLabel instance is used to provide both the st at usBar and the

posi t i onBar . Table1 summarises the classes that the main components of

the user interface either extend or are instances of.

Class Name Function Java Class

EditorFrame GUI frame JFrame

Drawer Drawing area JPanel

JPanel1 Editor toolbar (for editor functions) JPanel

JPanel2 Contains FileToolBar JPanel

FileToolBar Buttons for file functions (open, save etc) JToolBar

StatusBar Output information to user Jlabel

PositionBar Display position on draw area (Drawer) Jlabel

JFileChooser1 Display dialog for JFileChooser

JmenuBar1 Implement menus JMenuBar

Table 1. The classes present in the GUI.

4 IMPLEMENTATION

 40

Figure 17. A Class Diagram of the classes used in the Graphical User Interface.
The class EditorFrame, provides the frame for the user interface, this class extends
the swing class JFrame. The other components of the user interface are all part of
the EditorFrame. The classes Drawer, jPanel1 and jPanel2 all extend the Swing
class, JPanel. These classes implement areas of the user interface. Drawer is
responsible for the design area, for this reason it implements MouseListener and
MouseMotionListener interfaces, to enable the design area to respond to mouse
actions. JPanel1 implements the edit toolbar, which contains buttons to select
editing features. JPanel2 is located at towards the top of the user interface and
contains the FileToolBar. The FileToolBar extends the Swing class JToolBar. The
JsplitPane and JscrollPane classes used in the user interface are not displayed in this
figure. The JsplitPane, has a JscrollPane on either side, the scrollPane on the left
contains the design area, while the right scrollPane contains the EditTable.

4.2.2 Interaction of Petri Net Classes with User Interface

The previous section described the basic design of the user interface, these

features had to be combined with the Petri net classes to produce a

functioning editor.

EditorFrame

Drawer

JPanel

jPanel1 jPanel2

MouseL istener

MouseMotionListener
FileToolBar

JToolBar

JFrame

4 IMPLEMENTATION

 41

Editing classes were introduced in Design (see chapter 3); these classes

provide implementation to perform editing functions upon Petri nets, with

each class encapsulating a different feature. All these classes inherit the same

base class, (called EditClass in Design, see figure 10). When implementing

these classes it was decided that the base class they extend should be

Pet r i Component , the class that all Petri net component classes extend.

This was done because most of the classes require data members present in

the Pet r i Component class, such as posi t i on, and the editing classes

have to interact with the Dr awer instance (the design area), as do the Petri

net component classes. This implementation simplifies the implementation

of the Dr awer class and the addition of new editing features as described

below.

The Dr awer class, which provides the design area, also stores all the data

concerning the Petri net that it displays. Instances of the Vect or class are

used to store the places, transitions, subnets and arcs of the Petri net.

All design actions (i.e. Petri net component classes and editing classes) such

as adding transitions or editing components are performed within the Dr awer

design area, of the user interface. At all times one of the design actions

(buttons on the edit toolbar) is selected, and an instance of the respective

class is assigned to a Pet r i Component reference in Dr awer , called

sel ect edShape. For example, if Ar c is selected then an instance of arc is

assigned to sel ect edShape.

Dr awer implements both MouseLi st ener and MouseMot i onLi st ener

interfaces (java.awt.event) to identify mouse actions. mousePr essed() ,

mouseDr agged() and mouseRel eased() functions are called to act upon

the mouse being pressed, dragged and released respectively (as their names

might suggest). Each of these functions call a different Pet r i Component

function for the selected shape; mousePr essed() calls st ar t Pos() ,

mouseDr agged() calls set Posi t i on() and mouseRel eased() calls

f i ni shDr aw() . The classes extending Pet r i Component implement these

functions to provide the correct editing capabilities. Figure 18 demonstrates

4 IMPLEMENTATION

 42

the mousePr essed() function from the Dr awer class and the st ar t Pos()

function from the Ar c class.

This modular design simplifies the Dr awer implementation, by requiring

each of the Pet r i Component inheriting classes to implement functions to

deal with mouse actions. This means that Dr awer calls the same functions

independent of whether a Petri net component class such as Ar c is selected or

an editing class such as Edi t Ar cs is selected as demonstrated in figure 18.

This simplifies future extensions to the editing capabilities as new features

can be added by implementing a new class extending Pet r i Component ,

without requiring modification of the Dr awer class.

4 IMPLEMENTATION

 43

a)
publ i c voi d mousePr essed(MouseEvent e) {
 e. consume() ;
 st ar t Pos. x = e. get X() ;
 st ar t Pos. y = e. get Y() ;
 t heFr ame. st at usBar . set Text (" Mouse Pr essed at (" + st ar t Pos. x +
" , "

+ st ar t Pos. y + ") ") ;
 / / …………
 sel ect edShape. st ar t Pos(st ar t Pos, t hi s) ;
}

b)
publ i c voi d st ar t Pos(Coor di nat es st ar t Pos, Dr awer d) {

 / / check i f st ar t s on a t r ansi t i on or a pl ace
 i nt num = d. t r ansi t i ons. s i ze() ;
 f or (i nt i =0; i < num; i ++) {

 Tr ansi t i on t emp = (Tr ansi t i on) d. t r ansi t i ons. el ement At (i) ;
 i f (t emp. i sOn(st ar t Pos)) {
 / / set t he ar c so t hat i t or i gi nat es f r om t he cent r e of t he
 posi t i on. x = t emp. posi t i on. x + (t emp. si ze. w/ 2) ;
 posi t i on. y = t emp. posi t i on. y + (t emp. si ze. h/ 2) ;
 ar cTr an = t emp;
 dr awi ngPosi t i on() ;
 r et ur n;
 }
 }

 num = d. pl aces. si ze() ;
 f or (i nt i =0; i < num; i ++) {

 Pl ace t emp = (Pl ace) d. pl aces. el ement At (i) ;
 i f (t emp. i sOn(st ar t Pos)) {
 posi t i on. x = t emp. posi t i on. x + (t emp. si ze. w/ 2) ;
 posi t i on. y = t emp. posi t i on. y + (t emp. si ze. h/ 2) ;
 ar cPl ace = t emp;
 dr awi ngPosi t i on() ;
 r et ur n;
 }
 dr awi ngPosi t i on() ;
 }

 f i ni shPos. x = posi t i on. x =st ar t Pos. x;
 f i ni shPos. y = posi t i on. y =st ar t Pos. y;
 }

Figure 18. Sample of mousePressed() function the Drawer class and startPos()
from the Arc class. a) mousePressed() is called when the mouse is pressed within
the Drawer (design area). It calls startPos() for the selected PetriComponent,
selectedShape. b) This sample of code from StartPos() in the Arc class, checks if
the arc begins on a place or transition and sets variables appropriately.

4 IMPLEMENTATION

 44

4.3 Hierarchical Petri Net Implementation

Once a basic editor had been implemented, support for hierarchical Petri nets

needed to be implemented. The main features that had to be addressed were

the selection and identification of interaction points, the ability to add subnets

to a Petri net and most importantly the mechanism to move between different

levels of a Petri net effectively.

4.3.1 Interaction Points

Selecting interaction points was one of the simpler tasks. A Boolean

variable, i nt er act i onPoi nt , was added to the Sol i dPet r i Component

class (figure 16). This variable is set true when a place or transition is an

interaction point and false otherwise.

A class I nt er act i onPoi nt was implemented to provide the ability to

select and deselect interaction points. This class extends Pet r i Component

like the other editing classes. The st ar t Pos() function was implemented to

identify if the mouse is pressed over a place or transition and if so its

i nt er act i onPoi nt status is toggled (i.e. set false if was already true, and

set true if it was previously false).

To distinguish interaction points from other transitions and places, the

pai nt Component () functions of transitions and places were modified, such

that interaction points are filled green.

Interaction points are displayed on the outside of subnets (figure19), they also

have a location inside the subnet. To store both of these positions a second

position called subnet Posi t i on, was added to the

Sol i dPet r i Component class. subnet Posi t i on stores the position of the

interaction point on the outside of the subnet.

4 IMPLEMENTATION

 45

A reference to a subnet, t heSubnet was added to Sol i dPet r i Component ,

it refers to the subnet the component belongs to, if any. Components need to

know which subnet they belong to for displaying their full name when

interaction points are viewed (see figure 19) and when writing to file in save

operations. A Boolean variable, i nSubnet , is used to identify if a subnet is

the Petri net currently displayed in the design area or if it is present as a

subnet. This variable is used to ensure that only the correct components are

painted, for example, only interaction points are painted when the net is

displayed as a subnet, but all components are displayed when viewed as the

main Petri net. (figure 19).

Figure 19. A simple Petri net demonstrating the positions of interaction points.
A) The representation of a subnet in a hierarchical Petri net. The interaction points
of the subnet are shown on the outside of the subnet. They display their full name,
which is the name of the subnet concatenated with their own name (e.g. place p3 is
labelled subnet0p3).
B) The Petri net that the subnet represents, in this example, the reader writers net
from Figure 2 has been used. Eight of the places and transitions have been set as
interaction points. All the places and transitions, not just the interaction points are
visible as demonstrated by transition t0, which is displayed in the B but not in A.

A B

4 IMPLEMENTATION

 46

4.3.2 Addition of Subnets
The class Subnet encapsulates the ability to add subnets to a Petri net and to

store and manipulate the contents of a subnet. Subnet was implemented to

inherit Sol i dPet r i Component , because like places and transitions, subnets

can be added to Petri nets. They can also be selected for editing and have

their position altered, and implementation to do this is provided in

Sol i dPet r i Component . The Subnet class contains Vect or s to store its

places, transitions, subnets and arcs.

To provide a choice of how a subnet is added the f i ni shDr aw() function

of the Subnet class, displays a JOpt i onDi al og prompting the user to

either select a blank subnet or a file to use for the subnet. If a file is chosen,

an instance of Xml Fi l eReader (see 4.6) is created to parse the file.

Subnets need to display their interaction points, so the higher level Petri net

can identify them. When a subnet is added, interaction points are identified

as a subnet file is parsed and the Subnet function

set I nt er act i onPosi t i ons() is called. This function sets an interaction

point’s position on the outside of the subnet to one of eight preset positions.

The eight interaction points on the subnet in figure 19A demonstrate these

positions.

4.3.3 Switching between levels of the subnet

Implementation was required to enable moving up and down hierarchical

Petri nets, to display and edit different levels of the Petri net. Importantly the

hierarchical structure must be maintained while navigating a hierarchical

Petri net. To ensure this the implementation providing movement between

levels of a hierarchical Petri net, leaves the hierarchical structure as it is and

just copies the relevant subnet that is to be displayed to the instance of

Dr awer (i.e. to the design area). Two vectors cur r ent Level and

hi gher Net s, were added to Dr awer class, they both store references to

subnets. They are required to ensure the hierarchical structure is maintained

4 IMPLEMENTATION

 47

and any editing is both displayed on the design area and added to the correct

subnet.

The Edi t Subnet class was implemented to manage moving down a

hierarchical Petri net. It extends Pet r i Component like the other editing

classes. When the mouse is clicked it identifies if it was clicked on one of

the displayed subnets, if so that subnet is selected and loaded (figure 20

includes a sample of the l oadSubnet () function). When a subnet is loaded

a reference to the selected subnet is added to the end of the cur r ent Level

vector. This ensures that once the subnet is loaded, the last element of this

vector will refer to the subnet that is being displayed. This reference is used

to ensure that any changes made at this level are carried out on this subnet. A

reference to the level that is being left is added to the hi gher Net s vector.

The hi gher Net s vector identifies the levels that were displayed before the

current level on display. This vector can then be used when the navigating

back up the hierarchy (see below). The contents of the selected subnet are

then copied to the Dr awer vectors so it can be displayed. While this is done,

the i nSubnet variables of the places and transitions are set to false, because

the components are no longer being displayed as if they are inside a subnet.

The positions of interaction points also have to be set to ensure they are

displayed at the correct locations.

A Jbut t on called the backBut t on was added to the user interface to move

back up the hierarchy. A separate class like Edi t Subnet was not required

to implement moving back up the hierarchy because the path followed down

the hierarchy is reversed and there is no choice as to which level to return to.

To move up a single level, the contents of the net being displayed have their

variable i nSubnet set to true, the last element of the hi gher Net s vector is

removed and its contents copied to the instance of Dr awer , the last element

of cur r ent Level is also removed. Figure 21 displays a sample of the

function that performs this.

4 IMPLEMENTATION

 48

publ i c voi d l oadSubnet (Subnet sel Subnet , Dr awer d) {
 Subnet t empSubnet = new Subnet () ;
 d. checkLevel (f al se) ;
 t empSubnet . copyToSubnet (d) ;
 d. hi gher Net s. addEl ement (t empSubnet) ;
 d. c l ear Canvas() ;
 sel Subnet . copyToDr awer (d, f al se) ;
 }

Figure 20. loadSubne()t function from the EditSubnet class. This function is called
when a subnet has been selected to load, the contents of the selected subnet are
copied to the drawer so as to display them and the previous level is added to the
higherNets vector.

 voi d j But t on9_act i onPer f or med(Act i onEvent e) {
 / / Thi s but t on moves back a l evel ;
 i f (dr awAr ea. hi gher Net s. s i ze() ! = 0) {
 Subnet t empSubnet = (Subnet) dr awAr ea. hi gher Net s. l ast El ement () ;
 / / Swi t ch el ement s cur r ent l y on dr awer t o be i nSubnet
 i nt num = dr awAr ea. t r ansi t i ons. s i ze() ;
 f or (i nt i =0; i < num; i ++) {

 Tr ansi t i on t empTr an =
(Tr ansi t i on) dr awAr ea. t r ansi t i ons. el ement At (i) ;

 t empTr an. i nSubnet = t r ue;
 i f (t empTr an. net Posi t i on ! = nul l)
 t empTr an. swi t chPosi t i on() ;
 }

 num = dr awAr ea. pl aces. si ze() ;
 f or (i nt i =0; i < num; i ++) {
 Pl ace t empPl ace = (Pl ace) dr awAr ea. pl aces. el ement At (i) ;
 t empPl ace. i nSubnet = t r ue;
 i f (t empPl ace. net Posi t i on ! = nul l)
 t empPl ace. swi t chPosi t i on() ;
 }

 t empSubnet . copyToDr awer (dr awAr ea, t r ue) ;
 dr awAr ea. hi gher Net s. r emove(t empSubnet) ;
 dr awAr ea. checkLevel (t r ue) ;
 r epai nt () ;

dr awAr ea. cur r ent Level . r emove(dr awAr ea. cur r ent Level . l ast El ement ()) ;
 }
 el se r et ur n;
 }

Figure21. actionPerformed() function to move to a higher Level. A jButton is used
to move back up the hierarchy. When pressed it sets the inSubnet variable of the
components of the displayed net to true and copies the higher level subnet to the
Drawer (This is the last element of the higherNets Vector).

4 IMPLEMENTATION

 49

4.4 Open Architecture

The Reflection API, part of the Java programming language, enables

executing programs to dynamically load classes. The capabilities of

Reflection were exploited in the implementation of the open architecture.

An interface was implemented that modules to be dynamically loaded must

follow. It is shown in figure 22. The Modul e interface follows the design

described in Design (chapter 3). It contains two functions, r unModul e()

which executes the module’s analysis functions and get Modul eName(),

which returns the module’s name. The third element of the interface is the

string, i nput Fi l eName, a constant, which is initialised to “current.xml” the

file modules parse to obtain the Petri net that they are to analyse.

public abstract interface Modul e {

 public abstract void r unModul e() ;

 public abstract St r i ng get Modul eName() ;

 static final St r i ng i nput Fi l eName = " cur r ent . xml " ;

}

Figure 22. The module interface. Analysis module to be dynamically loaded must
implement the module interface. RunModule() is called to execute the analysis
functions, getModuleName() returns the name of the analysis module and
inputFileName is set to the file name that modules parse to obtain the structure of
the Petri net.

To load a module, the load module menu item (figure 23) from the module

menu must be selected. A File Chooser enables selection of the class to be

dynamically loaded. The name of this class is then passed to the

cr eat eObj ect () function, a function of Edi t or Fr ame(figure 24), which

creates and returns an instance of the class. This object is then assigned to a

data member of Edi t or Fr ame. Upon loading a module, menu items are

4 IMPLEMENTATION

 50

added to the module menu to run and remove the module, as shown in figure

23.

Figure 23. The module menu.

A) The module menu without any modules loaded. Load module is selected to
load an analysis module.

B) The module menu with the Invariant analysis module loaded. A menu item
to run the invariant analysis module and another to remove it are added to
the module menu.

st at i c Obj ect cr eat eObj ect (St r i ng c l assName) {
 Obj ect obj ect = nul l ;
 t r y {
 Cl ass c l assDef i ni t i on = Cl ass. f or Name(cl assName) ;
 obj ect = c l assDef i ni t i on. newI nst ance() ;
 } cat ch (I nst ant i at i onExcept i on e) {
 Syst em. out . pr i nt l n(" Er r or l oadi ng Modul e") ;
 Syst em. out . pr i nt l n(e) ;
 } cat ch (I l l egal AccessExcept i on e) {
 Syst em. out . pr i nt l n(" Cl ass Coul dnot be accessed") ;
 Syst em. out . pr i nt l n(e) ;
 } cat ch (Cl assNot FoundExcept i on e) {
 Syst em. out . pr i nt l n(e) ;
 Syst em. out . pr i nt l n(" Cl ass coul d not be f ound") ;
 }
 r et ur n obj ect ;
 }

Figure 24. Use of Reflection to dynamically load classes. The createObject()
function is passed a string containing the name of the class to dynamically load and
returns an instance of this class. This function is adapted from the Java Tutorial
www.java.sun.com/tutorial.

To run a module and to obtain the name of a module, the respective functions

in the module class first have to be identified and then invoked. Figure 25

4 IMPLEMENTATION

 51

demonstrates the Dr awer class function r unAModul e() , which is called to

execute a module’s analysis features. Before analysis is performed the

current Petri net is saved to a file called current.xml (the file that modules

load Petri nets from). The r unModul e() method of the analysis class is

then obtained using the get Met hod() function (from the Reflection library),

which returns the method to a Method variable (called r unModul eMet hod

in Figure 25). The method can now be invoked using

r unModul eMet hod. i nvoke(modul e, ar gument s) , which is passed the

instance of the class upon which the method is to act and an array of

arguments, which in this case is empty. This results in calling the

r unModul e() function, which should perform the analysis. To obtain the

module name, a similar function is used to invoke the module’s

get Modul eName() method.

 pr i vat e voi d r unAModul e() {

 / / save t he Pet r i net t o cur r ent . xml
 saveFi l e(" cur r ent . xml ") ;

 Cl ass[] par amet er Types = new Cl ass[] { } ;
 Met hod r unModul eMet hod;
 Obj ect [] ar gument s = new Obj ect [] { } ;
 Cl ass modul eCl ass = modul e. get Cl ass() ;
 t r y {
 r unModul eMet hod = modul eCl ass. get Met hod(" r unModul e" ,

par amet er Types)
;

 r unModul eMet hod. i nvoke(modul e, ar gument s) ;
 } cat ch (NoSuchMet hodExcept i on t) {
 / / Syst em. out . pr i nt l n(t) ;
 Syst em. out . pr i nt l n(" Er r or l oadi ng modul e! ") ;
 } cat ch (I l l egal AccessExcept i on t) {
 / / Syst em. out . pr i nt l n(t) ;
 Syst em. out . pr i nt l n(" Er r or i nvoki ng met hod! ") ;
 } cat ch (I nvocat i onTar get Except i on t) {
 Syst em. out . pr i nt l n(t) ;
 t . pr i nt St ackTr ace() ;
 }
 }

Figure 25. runAModule() function from EditorFrame. runAModule(), initially
saves the file to Petri net to the file current.xml. It then obtains the runMethod()
Method from the desired module class and subsequently invokes it to perform the
analysis. This function was adapted from functions in the Java Tutorial
www.java.sun.com.

4 IMPLEMENTATION

 52

When a module is removed, the menu items are removed from the module

menu and the reference to the module instance in Edi t or Fr ame is reset to

null, removing all references to the module.

4.5 Invariant Analysis Module

The class structure of the Invariant analysis module is simple compared to the

editor itself. The module consists of three classes, Anal ys i s ,

I nvar i ant XMLFi l eReader and I nvar i ant Di al og. Anal ysi s

implements the Modul e interface (figure 22) and implements the Invariant

analysis algorithm. I nvar i ant XMLFi l eReader parses current.xml

initialising the data fields of an instance of Anal ys i s .

When the Anal ys i s method r unModul e() method is called, an instance of

I nvar i ant XMLFi l eReader , is created, the file is parsed and the algorithm

executed. The algorithm determined by D’Anna & Trigila (D’Anna &

Trigila 1988) for finding invariants was implemented. An outline of the

algorithm is reproduced below.

4.5.1 Invariant Analysis Algorithm
The same algorithm is used to calculate both P and T invariants. The

incidence matrix C is the input for the algorithm. C is used for calculating T

invariants, while the transpose of C is used for the calculation of P invariants.

4 IMPLEMENTATION

 53

The algorithm:

Initialisation

• The Incidence matrix C has dimensions m x n , the number of places

and transitions respectively.

• An identity matrix, B, of dimensions n x n is constructed

• The extended matrix is formed by combining C and B, by writing C

above B. The resulting extended matrix has m+n rows and n

columns.

Phase 1 - removes non-zero elements from C

• While there are non zero elements in C do

o I f there is a row h in C such that either sets, P+ and P- are the
empty set. Where P+ is all the positive elements in row h and
P- is all the negative elements in row h) then Ö Delete from the extended matrix all columns where

row h has a non zero column.
o Else (if there is a row h in C with |P+| = 1 or |P-| = 1 then × Set k equal to the unique index of the column

belonging to P+ (algorithm reversed if |P- | =1) Ø For (j in P-) do
• Substitute to the column of index j the linear

combination of the columns indexed by k and j
with the coefficients |C(hj)| and (C(hk)|
respectively. Ù Delete the column of index k from the extended

matrix.
o Else Ú set h equal to the index of the non-zero row of C, and k

to the index of the column so C(hk)!=0 Û for (j where J!=k and C(hj)!= 0) do
• substitute to column with index j the linear

combination of the columns with indicdes k
and j with coef Ü�Ý(Þ	Ý�ß�à�ábâ ã�àMä â�åEÞjæçá(æMã/á ã�àMä
ã�è¸ß`é[Ý°Ü�êbâ/Ý°ë�àMê}ìíê�æ/î/ïbïñð~òóâ/Ý°ë�àôâ/Ý°ë�àMê}ìíê�æ`õ[ïbï3á�æ�ß8à

ò÷ö ìíê�æ�î"ï"ö�ã�à�ä òøö ìíê�æ�õ�ï"ö�ß5ù(â/ß ò - ú ûíü�ý�þ/ÿAú �

�

|C(hk)|.
• Delete from the extended matrix column with

index k

4 IMPLEMENTATION

 54

Phase 2

• While (B has arrow with index h containing negative elements) do

o P- = negative elements in row h
o P+ = positive elements in row h
o I f P+ is not empty

� For (j,k) in P+ x P- do
• Perform a linear combination on columns j ank

k to obtain a new columns with the h-th
element equal to zero,

• Divide the new column by the greatest
common denominator of its elements

• Append the column to B
o Delete from B all columns with indexes in P-

• Delete from B all columns having non-minimal support

4.5.2 InvariantDialog
InvariantDialog extends JDialog. It displays the results of the invariant

analysis. P and T invariants, P invariant equations and information regarding

the liveness and boundedness of the Petri net are displayed in separate text

fields.

4.6 File Format

Files are written using a Fi l eWr i t er instance. A function wr i t eToFi l e()

is called for each component of the Petri net to save its details to file.

XML file parsing to read files when opening or adding subnets was aided by

the new JAXP1.1 library (www.java.sun.com/xml/) which provides classes to

perform XML parsing. The class Xml Fi l eReader was implemented to

handle parsing, it extends Def aul t Handl er , a class from this library. The

Xml Fi l eReader class creates a SAXPar ser (a class form the JAXP

library) instance to parse the XML file, and also provides the implementation

to interpret the XML tags identified by the SAXPar ser . This is done using

4 IMPLEMENTATION

 55

three simple functions, st ar t El ement () , endEl ement () and

char act er s() . The SAXPar ser calls st ar t El ement () when a start tag

is encountered. st ar t El ement () identifies what the tag is, any attributes it

may have and provides implementation to act upon this information. A

sample of st ar t El ement () , is shown in figure 26, it shows that when a

place tag is encountered, a new Pl ace instance is created and it name is set.

EndEl ement () is called when a terminating tag is encountered. Like

st ar t El ement () , endEl ement () identifies what the tag is and functions

are called to process this information. Figure 27, demonstrates this for an

end place tag (</place>). Finally char act er s() is called when there are

parameters between tags. This function is implemented to identify such

parameters and act accordingly.

 publ i c voi d st ar t El ement (St r i ng namespaceURI ,
 St r i ng sName,

 St r i ng qName,
 At t r i but es at t r s)
 t hr ows SAXExcept i on
 {
 St r i ng eName = sName; / / el ement name

i f (" pl ace" . equal s(eName)) {
 newComponent = new Pl ace(0) ;
 i f (at t r s ! = nul l) {
 newComponent . name = at t r s. get Val ue(0) ;
 }
 }

 i f (“ t r ansi t i on” . equal s(eName)) {
 / / …………………………………
 }

 }

Figure 26. startElement() Function in XmlFileReader. When the SAXParser
encounters the start of a tag, startElement() is called, which provides the
implementation to parse the tag. The section of code demonstrates how a
place tag (<place>) is parsed.

4 IMPLEMENTATION

 56

publ i c voi d endEl ement (St r i ng namespaceURI ,
 St r i ng sName, / / s i mpl e name
 St r i ng qName / / qual i f i ed name
)
 t hr ows SAXExcept i on
 {
 St r i ng eName = sName;

i f (" pl ace" . equal s(eName)) {
 newComponent . addEdi t Poi nt s() ;
 i f (subnet Fl ag) {

i f (((Sol i dPet r i Component) newComponent) . i nt er act i onPoi nt) {

newSubnet . set I nt er act i onPosi t i on((Sol i dPet r i Component) n
ewComponent) ;

 }
 ((Pl ace) newComponent) . i nSubnet = t r ue;
 newComponent . t heSubnet = newSubnet ;
 newSubnet . pl aces. addEl ement (newComponent) ;
 newComponent . t heSubnet = newSubnet ;
 }
 el se
 d. pl aces. add(newComponent) ;
 }

 ………
}

Figure 27. endElement() function in XmlFileReader. When the SAXParser
encounters an end element the endElement() function in the DefaultHandler
(XmlFileReader) is called to parse the tag. This section of code demonstrates the
actions taken when an end place tag is reached (</place>).

5 RESULTS & CASE STUDIES

 57

5 Results & Case Studies

This Project has designed and implemented a Petri net editor called Predator.

In this chapter a number of case studies are used to investigate the

capabilities of the Predator Petri net editor.

5.1 Basic Editor Features

An initial aim of the project was to provide simple Petri net editor functions.

These include, adding arcs, places, transitions and tokens. A simple

Graphical user interface was designed to incorporate these features; it is

shown in figure 28.

Figure 28. The Predator Graphical User Interface. The arrows indicate the
components of the interface.

Design Area Edit Table

Edit toolbar

File tool bar

statusBar
positionBar

5 RESULTS & CASE STUDIES

 58

The user interface was implemented to provide a large design area, with the

editing options easily accessible in the edit Toolbar and on the edit Table.

All the operations required in designing a Petri net could be done using these

three elements of the user interface.

The ability of Predator to design Petri nets will be demonstrated by the case

studies in the following sections. Full details for using the Predator Petri net

editor are provided in the user guide (chapter 9).

5.2 Hierarchical Petri Nets

The Predator Petri net editor enables the design of hierarchical Petri nets via

the addition of subnets. Predator allows subnets to be added to any other

Petri net, allowing multiple level Petri nets to be designed. The

implementation requires only single mouse clicks to navigate the various

levels of a hierarchical Petri net. To move down a level, the editSubnet icon

must be selected, any subnet can then be viewed by clicking on it. To move

up a level a single click on the back level icon is required. Predator allows

interaction points to be visibly seen on the outside of the subnet. This feature

enables arcs between levels to easily be specified and observed as shown in

the dining philosophers example below (figure 31).

The dining philosophers is a common computing problem, used to

demonstrate deadlock. The system consists of five philosophers who are

either thinking or eating. There is a fork/chopstick between each of the

philosophers. To eat a philosopher must pick up the two forks directly next

to him. A single level Petri net of this problem is displayed in figure 29.

From this it is evident that each of the philosophers has the same structure

enabling them to be represented by a single Petri net (figure 30). This Petri

net can then be added to the system as a subnet for each of the philosophers

(figure 31). Comparison of the single level net and the hierarchical net

5 RESULTS & CASE STUDIES

 59

demonstrate the advantages of hierarchical Petri net design. The display of

hierarchical net is simpler and much clearer. It is easier to understand what

the Petri net is modelling.

Figure 29. A single level dining Philosophers Petri net. This Petri net models the
dining philosophers problem as a single level. Places p20, p21, p22, p23 and p24,
represent the chopsticks. The rectangular looking parts of the net are philosophers;
each has four places and four transitions. For example, p0 represents the first
philosopher thinking, t0, picking up the chopstick to the right of the philosopher. p1
represents the state when this chopstick has been picked up. t1 models the action of
picking up the second chopstick, this time form the left. This leads to place p2,
modelling the philosopher eating. The subsequent places and transition, t2, p3 and
t3 model releasing the chopsticks returning the philosopher to the thinking state.

5 RESULTS & CASE STUDIES

 60

Figure 30. A Petri net representing a single Dining Philosopher.

Figure 31. Hierarchical Dining Philosophers. This Petri net presents a hierarchical
design of the dining philosophers problem. Each of the philosophers is represented
by a subnet, with four interaction point transitions. Transition t0 of each philosopher
picks up the chopstick to the right. t1 picks up the chopstick to the left of the
philosopher, while t2 and t3 replace the chopsticks to the right and left of the
philosopher respectively. Each of the chopsticks is represented by a place. A token
on these places represents that the chopstick is available.
This figure demonstrates how Predator represents subnets and their interaction
points. Each subnet is a dashed rectangle, with its interaction points placed on the
outside of the subnet. The interaction points are distinguished from the components
of the higher level net by the thick line connecting them to the subnet. All
interaction points are painted green to distinguish them from the other components
of a Petri net.

Thinking Eating

5 RESULTS & CASE STUDIES

 61

5.3 Open Architecture

The aim of the open architecture was to enable the Petri net editor to

dynamically load classes, create instances of them and invoke their methods.

The initial step in demonstrating the function of the open architecture was to

attempt to load a t est Modul e class. This class implemented the Modul e

interface, the r unModul e() function was kept simple; it only output a string

to the standard output. This class was successfully loaded and executed

demonstrating that the open architecture functions correctly. The invariant

analysis module was also successfully loaded by the editor and executed on a

number of sample Petri nets (A full description of the invariant analysis

module follows in the next section).

The open architecture was further tested because another module

implementing the Modul e interface has been implemented independently of

this project (Dingle 2001). This module interacts with a pre-existing,

Markov chain Petri net performance analysis program Dnamaca (Knottenbelt,

1996). To demonstrate the open architecture this module was dynamically

loaded and run on a simple Petri net, as shown in figure 32.

5.4 Invariant Analysis Module

Invariant analysis is a well-supported analysis technique present in some

Petri net editors. Thus the invariants for common examples of Petri nets such

as the readers-writers problem and the producer-consumer problem are well

known. This provides examples with which to test the invariant analysis

implementation.

5 RESULTS & CASE STUDIES

 62

Figure 32. The Markov Chain Performance Analysis module loaded into the
Predator Petri net Editor and run on a simple Petri net. This screenshot
demonstrates the Markov chain analysis module run on the Predator Petri net editor.
This screenshot of the Petri net editor may look different from other because it was
run under Linux, as the Markov chain analysis module required this. All other
screenshots are taken from Windows execution of Predator

The invariant analysis module was initially tested with the simple Petri net

shown in figure 33,A. It correctly identified the P and T invariants of the net

as shown in table2. The addition of places, transitions and arcs to this Petri

net provided another simple test. Figure 33, parts b-e, display how the Petri

net was modified and table 2 presents the results obtained from invariant

analysis on them.

5 RESULTS & CASE STUDIES

 63

Figure 33. Simple Petri nets used for Invariant Analysis. Each of the Petri nets
labelled A to E were used to test the invariant analysis module. The expected
invariants and results are displayed in Table 2.

The readers-writers problem was also used to test the invariant analysis

module. A Petri net for the readers-writers problem was introduced in

chapter 2. For this Petri net there are three P invariants, described in

Background (2.1.3.2) and shown in table 2. The results obtained from the

5 RESULTS & CASE STUDIES

 64

invariant analysis module are shown in figure 34, they match the expected

results. Figure 35 provides a clearer illustration of the dialog used by the

invariant analysis module to display its results.

Figure 34. The output from the invariant analysis module for the Readers Writers
Problem. The information is output on four text fields. The P and T invariants are
displayed in the top text fields. The bottom left displays the P invariant equations
and the bottom right displays data on the boundedness and liveness of the system.

Figure 35. The InvariantDialog displaying the invariant analysis module results.
This dialog displays the same results for the readers-writers problem as in figure 34.

5 RESULTS & CASE STUDIES

 65

Petr i net Known Invar iants Results from Analysis
module

Simple Net (Fig 33. A) p0 + p1 + p2 = 5 p0 + p1 + p2 = 5
 t0,t1,t2 t0,t1,t2

Simple Net (Fig 33, B) p0+p1+p2 =5 p0 + p1+ p2 =5
 t0,t1,t2

t3
t0,t1,t2
t3

Simple Net (Fig 33, C) p0+p1+p2 =5

p3 =0
p0+p1+p2 =5
p3 =0

 t0,t1,t2
t3

t0,t1,t2
t3

Simple Net (Fig 33, D) p0+p1+p2 =5

p4 =0
p0+p1+p2 =5
p4 =0

 t0,t1,t2 t0,t1,t2

Simple Net (Fig 33, E) p0+p1+p2 =5

p3 +P4 =0
p0+p1+p2 =5
p3 +P4 =0

Readers Writers (Fig 34) p0 + p1 = 15

p1 + p2 + 15p4 = 15
p3 + p4 = 15

p0 + p1 = 15
p1 + p2 + 15p4 = 15
p3 + p4 = 15

 t0,t1
t2,t3

t0,t1
t2,t3

Producer Consumer (fig
36)

p0 + p1 = 1
p2 + p3 = 16
p4 + p5 = 1

p0 + p1 = 1
p2 + p3 = 16
p4 + p5 = 1

 t0,t1,t2,t3,t4 t0,t1,t2,t3,t4
Table 2. P and T invariants of the tested Petri nets. This table provides a
comparison between the known invariants (provided from texts or from invariant
analysis with DaNAMiCs Petri net editor) with those obtained from the Invariant
analysis module implemented.

The invariant analysis module was further tested using the Producer

consumer problem. Figure 36 displays the expected invariants for the

Produce consumer problems (as described in figure 36) and the results

obtained from the invariant analysis module.

The invariant analysis module has been tested on a limited number of Petri

nets, all of which suggest that the implementation correctly identifies both P

5 RESULTS & CASE STUDIES

 66

and T invariants. However further testing on more complex Petri nets is

needed.

Figure 36. The Producer Consumer Problem. The left side of this Petri net
represents the producer while the right models the consumer. The two components
are connected via a buffer that in this case allows up to sixteen items to be produced
at once. The buffer ensures that if there a no items produced the consumer cannot
consume any and if the buffer is full, then the producer can’ t produce until the
consumer consumes at least one item.

6 CONCLUSION & FUTURE WORK

 67

6 Conclusion & Future Work

The two central aims of this project were to design a Petri net Editor that

supported hierarchical Petri nets and provided an open architecture to

facilitate the dynamic loading of Petri net analysis modules. These aims

were met as discussed in the second (6.2) and third (6.3) sections of this

chapter. The basic infrastructure required to support these two features was

also implemented as discussed in the next section.

6.1 General Features

Predator, the Petri net editor implemented provides the basic features for

designing Petri nets that are available in most editors (described in chapter 2).

The various examples provided in the results (see chapter five) illustrate the

ability to design Petri nets with the Predator Petri net editor.

Support for hierarchical Petri nets and an open architecture were placed

ahead of additional editing features such as zooming and printing. Obviously

additional features such as these will improve the ability to design nets with

the editor but it would not be difficult to add them in the future.

6.2 Hierarchical Petri Nets

The support for Hierarchical Petri nets provided by other Petri net editors is

very basic and difficult to navigate the various levels of the Petri net

(discussed in chapter 2). This project set out to provide improved support for

hierarchical Petri nets, which was to be achieved primarily by making

interaction points between different levels of a hierarchical Petri net explicit

and by providing a simple way to navigate between the many levels of a

6 CONCLUSION & FUTURE WORK

 68

hierarchical Petri net. The Predator Petri net editor has provided improved

support for hierarchical Petri nets; interaction points can easily be

selected/deselected, and are also visible on the outside of subnets. The

implementation also enables single mouse clicks to enable moving between

different levels of a hierarchical Petri net.

The dining philosophers example (results, chapter 5) demonstrates the

advantage of designing complex systems using a compositional approach,

especially if the system contains repetitive units, like the philosophers in this

example.

Predator currently limits the number of interaction points a subnet may have

to eight. This was done to simplify the positioning of interaction points on the

outside of subnets but could be a limitation in the design of complex systems.

An implementation providing unlimited interaction points could be added in

the future.

This project has only explored the ability to design, edit and store

hierarchical Petri nets. This has demonstrated advantages in the design of

complex systems but much greater benefits could come from the use of

compositional approaches to testing and analysis of Petri nets. Process

algebras exploit their compositional nature in analysis techniques. It may be

possible to adopt them for hierarchical Petri net analysis. This provides an

area of future research. The predator Petri net editor could be a useful utility

for such research as it provides support to design hierarchical Petri nets and

the open architecture allows the dynamic loading of user defined analysis

modules.

6.3 Open Architecture

The aim of incorporating an open architecture into the design of the Petri net

editor was to provide users the power to implement, load and use analysis

techniques to suit their needs. All existing Petri net tools rely upon built in

6 CONCLUSION & FUTURE WORK

 69

analysis techniques, which limit the user to use only those provided with a

particular editor or to use multiple editors to provide all the analysis

capabilities they require.

The open architecture implemented using Java Reflection, fulfils it aims.

This has been demonstrated by the ability to dynamically load and execute

two different analysis modules, both offering different types of analysis

techniques. One of these modules was implemented separately from this

project (Dingle 2001). This module demonstrates that users will be able to

implement their own modules. Further as this module modifies a pre existing

analysis program Dnamaca, it demonstrates that new implementations are not

required but only modification to enable existing programs to parse the file

format and implement the Module interface.

6.4 Invariant Analysis Module

In the results (chapter 5), the invariant module was demonstrated to function

correctly for a limited number of Petri nets. It is not possible to verify that

the implementation will correctly analyse every Petri net, but the simple tests,

suggest that the module does perform invariant analysis correctly. The

implementation of this module was an important feature of demonstrating the

capabilities of the open architecture as discussed above.

6.5 File Format

The file format developed is based upon the Petri Net Markup Language

(Jüngel et al., 2000). The file format has been modified to support Stochastic

and Generalised Stochastic Petri nets, and further to support hierarchical Petri

nets. Two different file formats were used to provide hierarchical Petri net

support; a flattened form saving a hierarchical net as a single file and the

6 CONCLUSION & FUTURE WORK

 70

other saving each net as a separate file. The flattened structure was added to

provide the complete structure of a hierarchical Petri net in a single file, so

that editors or analysis modules that do not support hierarchical Petri nets can

parse a hierarchical Petri net as if it consisted of single level.

6.6 Concluding Remarks

The Predator Petri net editor has met the aims of this project. The open

architecture is a powerful feature of Predator enabling users to perform

whatever type of Petri net analysis they wish to. There is also much that can

now be explored in the field of Hierarchical Petri nets, whose structure could

be exploited in system design and analysis.

7 BIBLIOGRAPHY

 71

7 Bibliography

7.1 Book & Journal References

Ajmone-Marsan, M., Conte, G. & Balbo, G. (1984) A Class of Generalised
Stochastic PetriNets for the Performance Evaluation of
Multiprocessor Systems. ACM Transactions on Computer Systems,
2:93-122.

Bause, F. & Kritzinger, P.S. (1995) Stochastic Petri nets – An Introduction to

the Theory.

Ciardo G. & Trivedi, K.S. (1993) A decomposition approach for stochastic

reward net models. Performance Evaluation 18:37-59.

D’Anna, M. & Trigila, S. (1988) Concurrent System Analysis Using Petri

nets: An Optimised Algorithm for Finding Net Invariants. Computer
Communications, 11, 215—220.

Deitel & Deitel (2001) Java How To Program. 3rd Edition Prentice Hall.

Dingle (2001) The production of the extensible Petri net Editor/Animator –

“ Medusa” . Master Thesis, Imperial College.

Sundsted, T. (1996) Examining HotSpot, an object-oriented drawing

program. Java World , December 1996

Meeting on XML/SGML based Interchange Formats for Petri nets (2000).

Hillston., J. (1996) A Compositional Approach to Performance Modelling.

Cambridge University Press.

Jüngel, M., Kindler, E. & Weber, M. (2000) Towards a Generic Interchnage

Format for Petri nets – Position Paper. http://www.informatik.hu-
berlin.de/top/pnml/

Magee, J. & Kramer, J. (1999) Concurrency StateModels & Java Programs.

Wiley.

Mailund & Mortensen (2000) Separation of Style and Content with XML in
an interchange format for higher level Petri nets.

Molloy, M.K. (1982) Performance analysis using stochastic Petri nets. IEEE

7 BIBLIOGRAPHY

 72

Transactions on Computers, 31:913-917.

Knottenbelt,W.J. (1996) Generalised Markovian Analysis of Timed

Transition Systems. Masters Thesis, University of Cape Town.

Valente, A. & Gribaudo, M. (2000)Two level interchange format in XML

for Petri nets and other graph-based formalisms.

Woodside, C.M. & Li., Y. (1991). Performance Petri Net Analysis of

Communication Protocol Software by Delay-Equivalent Aggregation.
 Proceedings of the 4th International Workshop on Petri nets and
Performance Models, IEEE Computer Society Press, 64-73.

7.2 URL references

Websites that were particularly useful references are listed below.

Carl Petri’s Homepage -
http://www.informatik.unihamburg.de/TGI/mitarbeiter/profs/petri_eng.html

Petri net World - http://www.daimi.au.dk/PetriNets/

The Petri Net Tool Database -
http://www.daimi.au.dk/PetriNets/tools/db.html

The Java Tutorial http://www.java.sun.com/tutorial/

www.petrinets.org

7.3 Tool References

A number of Petri net Editor tools were tested and some are referenced in the

text. The URL of these tools’ homepages are given below.

CPN http://www-src.lip6.fr/logiciels/mars/CPNAMI/

DaNAMiCS http://www.cs.uct.ac.za/Research/DNA/DaNAMiCS/

7 BIBLIOGRAPHY

 73

HPSim http://home.t-online.de/home/henryk.a/petrinet/e/hpsim_e.htm

INA http://www.informatik.hu-berlin.de/~starke/ina.html

THORN/DE http://www.offis.uni-oldenburg.de/projekte/dns/project_dns.htm

Model checking kit http://wwwbrauer.in.tum.de/gruppen/theorie/KIT/

Visual Object Net++
 http://www.systemtechnik.tu-ilmenau.de/~drath/visual_E.htm

8 APPENDIX

 74

8 Appendix

Source code for the Predator Petri net editor will be available online at
http://mark.wass.com/Petrinets.html .

9 USER GUIDE

 75

9 User Guide

This chapter describes how to use Predator Petri Net Editor to design and edit

Petri nets. A number of the examples use the readers-writers problem.

9.1 Getting Started

9.1.1 Loading
Predator is provided in a JAR file called PEditor.jar. To run on command

line on either Windows or Linux type e.g. c:\java –jar PEditor.jar, or use the

batch file provided.

9.1.2 Initial Screen
Figure 9.1 demonstrates Predator’s user interface. From here Petri nets can

be designed, edited and loaded.

Components of the User inter face

drawing area - where Petri nets are displayed.

EditorToolBar – where editing tools are selected.

editTable - used to edit properties of Petri components

FileToolBar - used for file operations, e.g. loading and saving files.

Menu Bar - menus for opening files, loading modules and help

Status bar - displays information about operations such as file

 opening and saving

Position Bar - displays the position of the cursor on the screen

9 USER GUIDE

 76

Figure 9.1. The Predator Petri Net Editor Tool User Interface. The EditToolbar
provides editing options. The File Toolbar provides buttons to open and save files.
The editTable displays editable features of selected Petri net Components. The
Design area is the area where Petri nets are displayed. The position of the cursor is
displayed in the position bar. User information is displayed in the status bar.

9.2 Designing A simple Petri Net

To add components to a Petri Net the relevant button on the EditToolBar is

selected and the mouse clicked at the location the component is to be added,

as displayed in Figure 9.2. For example select Transition and add one to the

display.

To add Places, first select the place icon, and like transitions click on the

design area where places are to be added. Figure 9.3 displays the editor with

places added.

Timed Transition

Immediate Transition

Place

Arc

Poly Arc

Token

Remove Token

Clear

Remove components

Edit

Edit arcs

Add nodes

Remove nodes

Interaction point

Add subnet

Edit Subnet

FileToolBar

EditTable

PositionBar

Design Area

Menu bar

statusBar

9 USER GUIDE

 77

Figure 9.2. Transitions added to a Petri Net. The Transition icon from the
editToolBar is selected as shown. The mouse is then clicked on the design area
where transitions are to be added.

Figure 9.3. Places added to the Design Area.

Transition button
selected

9 USER GUIDE

 78

The position of components can be edited. To do this first select the edit icon

from the editToolBar then click and drag the mouse to cover the components

that are to edited, as shown in the figure 9.4. Once the mouse is released edit

points are drawn at the corners of the selected components, as shown in the

figure 9.5.

Figure 9.4. Editing. A place is being selected for edit. The edit icon has been
selected and the mouse has been dragged over the place that is to be selected. The
rectangle shows the selected area.

9 USER GUIDE

 79

Figure 9.5. Selected Components. The selected components are painted with
editpoints. Place p4 is selected.

9.2.1 Adding Arcs
Arcs connect places and transitions. To add an arc select the arc option and

click on place or transition that the arc is to start at. Then drag the arc to the

place or transition at which it is to finish (see figures 9.6 & 9.7).

9 USER GUIDE

 80

Figure 9.6. Adding an arc. Then mouse is pressed on the place or transition that it
is to start and dragged over to the place/transition where it is to finish.

Figure 9.7. Connecting an Arc to an input Place/transition. The arc was added by
releasing the mouse over the place p1.

9 USER GUIDE

 81

9.2.2 Tokens

Tokens can be added to places. To add a tokens to places, select token from

the editToolBar . Click on a place to add a token, repeat this for the number

that are to be added (see figure 9.8).

Figure 9.8. Adding Tokens to Places. Four tokens have been added to place p0.
The token icon on the editToolbar is selected, tokens are added by clicking on a
place.

Tokens can similarly be removed by selecting the removeTokens icon from

the editToolBar , and clicking on places.

Token number can also be changed when edit is selected from the

editToolBar . The number of tokens on multiple places can be changed at

the same time. First the places must be selected. The token number on the

9 USER GUIDE

 82

editTable can then be used to set the number of tokens on all the selected

places, as shown in the figure below (9.9).

Figure 9.9. Adding Tokens to multiple Places. The edit icon from the editToolBar
has been selected. The mouse was pressed and dragged to select places, p1,p2 and
p3. The editable (indicated above by large arrow) was used to set the token number
of these places to 5.

9.3 Subnets

9.3.1 Adding Subnets
To add a subnet select the subnet icon from the edittoolbar . Then click on

the screen to add a subnet. A dialog will appear (see figure9.10) giving the

option to add a subnet from a file, use a file, add a blank subnet or cancel the

addition.

9 USER GUIDE

 83

Figure 9.10. Adding a Subnet. Subnets can be added by selecting the subnet icon
from the editToolBar. The dialog is used to identify how the subnet should be
added. A blank subnet can be added or one from a file. If from file is selected then
when the Petri Net is saved the subnet will be saved to a different file, not the source
file. When use file is selected, the subnet will be saved back to the source file.

The options from file and use file then present FileChooser dialogs (figure

9.11) to select the file to use for the subnet. The difference in these two

options occurs when the Petri Net is saved. From file, saves the subnet as a

different file, where as use file, saves the subnet using the file selected. Once

selected a subnet is added as shown in figure 9.13.

9 USER GUIDE

 84

Figure 9.11. Choosing a subnet.When from file or use file are selected, a file
chooser dialog is displayed to obtain the name of the file to use for the subnet.

9.3.2 Subnet Interaction Points

Transitions and places of a Petri net can be set as interaction points by

selecting the interaction point icon from the edittoolbar . The interaction

point status of places and transitions can then be toggled by clicking on them.

Interaction points are filled green to distinguish them.

A subnets interaction points are displayed on the outside of the subnet. This

enables arcs from the current level of the Petri net to be connected to the

interaction points and thus interact with the subnet.

9 USER GUIDE

 85

0

1

2

3

4

5

6

7

Figure 9.12. Subnet interaction Points. A) How a subnet is displayed in a higher
level net. The interaction points are displayed at set positions, on the outside of the
subnet. B) ThePetri Net that makes up the subnet.

9.3.3 Editing a Subnet

Subnets can be edited by selecting the editSubnet icon from the editToolBar .

To move the position of interaction points click on one of the interaction

points. The positions of each of the interaction points are then displayed in

the editTable, they can be set to any of eight locations from 0 to 7. The

numbers in the figure above indicate the numbers of each position.

 A B

9 USER GUIDE

 86

Back icon

Figure 9.13. Editing the position of Interaction Points. The editSubnet icon from
the editToolbar has been selected. To modify the locations of the interaction points,
one of them must be clicked on. The positions of the interaction points are then
displayed in the editTable. Position values ranging from 0 to 7 can be enetered. If
there is already an interaction point at the chosen position, then the interaction points
are swapped.

To edit the contents of a subnet, click on the subnet, this will display the

contents of the Petri net for editing. If this level contains subnets they can

also be clicked on to move further down the hierarchy. The back icon

(indicated in the figure above) is used to move back up the hierarchy.

9.3.4 Saving Hierarchical Petri Nets

Hierarchical Petri nets can be saved using a separate file for each subnet, or

the whole hierarchical net can be saved to a single file. To save Petri nets

using a single file, save is selected from the File menu. Otherwise to use a

separate file for each subnet, saveSeparate is selected(figure 9.14).

9 USER GUIDE

 87

Figure 9.14. Saving Hierarchical Petri nets. To save a hierarchical Petri Net as a
set of files choose Save separate from the file menu. To save as a single ‘ flattened
file’ choose Save. To save a file under a different name choose saveAs.

9.4 Editing Petri Net Components

9.4.1 Editing Transitions, Places and Subnets
Selecting the edit icon (on the editToolBar), enables the positions of

transitions, places and subnets to be changed. It also enables the renaming of

transitions and places. To edit one of these components click on the mouse

and drag to completely cover the objects that are to be selected. To move

them, press the mouse on one of the selected objects and drag it to the desired

position, see figure 9.15. Some examples of selection have been shown in

earlier diagrams (setting token number of multiple places).

9 USER GUIDE

 88

Figure 9.15. Multiple Selection. All the components of this Petri Net have been
selected. They can be moved by pressing the mouse on top of one of the selected
components and dragging to a new position.

The figure above demonstrates that Petri Net components can be selected

together. If only places or a single type of transition are selected then further

properties can be edited in the editTable. For timed transitions their firing

rate can be edited. Immediate transitions can have their weight edited.

Editing of these properties is shown in the following two figures (figures 16

& 17).

9 USER GUIDE

 89

Figure 9.16. Selecting Timed Transitions. In this figure two timed transitions have
been selected. Entering a new rate in the rate column of the EditTable can alter their
firing rate. Like multiple selection their positions can also be changed.

Figure 9.17. Selecting Immediate Transitions. In this figure two immediate
transitions have been selected. Entering a new weight in the weight column of the
editTable can set their weight.

9 USER GUIDE

 90

9.4.2 Editing Arcs

To edit arcs select the editArcs icon. This will display a square in the middle

of each arc as shown in figure 9.18, below. To modify the weight of an arc

click on its square, and change the weight displayed in editable.

Figure 9.18. Editing Arcs. The EditArc icon has been selected from the
editToolBar . EditPoints are displayed in the middle of all arcs. To modify the
weight of an arc click on its edit point and enter a new weight in the Weight column
of the ediTtable.

9.4.3 Removing Petri Net Components

Components can be removed by selecting the remove components icon from

the edit toolBar. Componenets are then removed by clicking on them. All

9 USER GUIDE

 91

arcs associated with places and transitions are also removed when they are

deleted. The contents of subnets are also removed when subnets are

removed. To clear the canvas click the clear icon on the editToolBar .

9.4.4 Opening, Saving and New Files

The File Menu and File ToolBar enable the user to open and save files and
create new files.

Figure 9.19. The FileMenu & File ToolBar.

New – allows the user to create a new file, if the current file has been
modified then the user is prompted to see ifthey want to save the file

Open – open a Petri Net file – displays a File chooser dialog for the user to
choose a file to open.

Save – save the current Petri Net, if the net is hierarchical it will be saved in
as a single file rather than a set of files.

SaveSeparate – saves hierarchical Petri nets as a set of files rather than a
single file.

SaveAs – saves a file under a different name. For hierarchical Petri nets the
type of format previously selected is used.

Save As

Save

Open

New File

9 USER GUIDE

 92

9.5 Petri Net Analysis – Open Architecture

The Predator Petri net editor provides an open architecture, for the dynamic

loading of analysis modules. The current version supports a maximum of

four modules. This enables users to write their own analysis modules and

upload them to the Editor.

9.5.1 Module Interface

Modules that are to be uploaded must follow a basic interface shown below:

public abstract interface Modul e {

 public abstract void r unModul e() ;

 public abstract St r i ng get Modul eName() ;

 static final St r i ng i nput Fi l eName = " cur r ent . xml " ;

}

The runModule() method is called to execute the analysis module.
GetModuleName(), is called by the editor to obtain the name of the analysis
module.

9.5.2 Loading an Analysis Module
Modules can only be loaded if they are added to the PEditor jar file. The
command to do this is:

jar uvf PEditor.jar filename

To load an analysis module select load module from the Module menu
(figure 9.20). A dialog or filechooser will be displayed for you to enter the
name of the class you wish to load.

Two menu items are added to the module menu when a module is loaded.
One is labelled run moduleName, the other labelled remove moduleName,
where moduleName is the name returned by the modules getModuleName
function.

9 USER GUIDE

 93

Figure 9.20. The Module Menu. A). The module menu when no modules are
loaded. The load module menu item is pressed to load a module. B) the module
menu once the invariant analysis module has been loaded. Two menu items are
added for each module loaded; one to run the module and the other to remove the
module.

9.5.3 Running An Analysis Module

To run an analysis module select run moduleName from the module menu.
To remove a module select the appropriate remove moduleName, from the
module menu.

9.6 Invariant Analysis Module

An analysis module to perform invariant analysis has been implemented to

work with the open architecture. The module can be loaded as described in

the previous section. When executed the module displays a dialog (shown in

figures 9.21 & 9.22), giving the P and T invariants as well as the P invariant

equations and information on the liveness and boundedness of the Petri Net.

9 USER GUIDE

 94

Figure 9.21. Invariant Analysis Results. The invariant analysis dialog, for the
readers writers problem. When run the invariant analysis module displays its
results in a dialog.

Figure 9.22. The invariant analysis dialog. The P and T invariants as well as the P
invariant equations and statements on the boundedness/liveness of the system are
displayed.

