Imperial College of Science,
Technology and M edicine
(University of London)
Department of Computing

Predator — A Hierarchical Petri Net Editor
by

Wass. M.

Submitted in partial fulfilment
of the requirementsfor theM Sc
Degreein Computing Science of the
University of London and for the
Diploma of Imperial College of

Science, Technology and M edicine.

September 2001

Abstract

Petri nets are a widely used modelling technique and a number of Petri net
editor tools exist to design Petri nets. However current tools provide little
support for hierarchical Petri nets and all analysis features are built into the
tools. A Petri net editor was designed and implemented. It provides
improved support for hierarchical Petri nets, allowing complex Petri nets to
be ssimplified into smaller subnets. The Petri net editor also incorporates an
open architecture enabling the dynamic loading of separately implemented
analysis features. An invariant analysis module was implemented to

demonstrate the operation of the open architecture.

Acknowledgements

Many thanks to William Knottenbelt my project supervisor who has been a

continual source of support and guidance throughout the project.

Thanks also to the Java Tutorial, without which | don’t think | would have
got very far.

Contents

AB ST RA CT e e e e st e s e e e e s s eab e e e s s ebae e e s e earens 0
ACKNOWLEDGEMENTS ...ttt 2
(O ANl I =\ 1 3
LINTRODUCTION ..ottt ettt s e s ba e s s ebaea e 6
2 BACKGROUNDciiiiii ittt ettt e e e et e e e s e e e e ssaasae e e e e s s e e saanes 8
2.1 PETRIINETS. o ttuttiuttiteiiitriittistrierrisssisesisssrsrs s s e ... 8
2.1.1 Development of PeLri NELS.........ccceeieeeiiecieccee e 8
2.1.2 Hierarchical Petri NEtS.......cccceeiicviieieeieee et 11
2.1.3 Properties Of Petri NEtS.........ccccoeevii e 12
2.1.4 Petri Net ANAlYSIS.....cooiieeieeie e 13
2.1.4.1 Animation — Token Game ANIMationccceeeeeeeeeeeecvveeeeenns. 13

2.1.4.2 CorrectNESS ANAIYSIS......ccuerieeiieieeiesie e 13

2.1.4.3 Performance ANAlYSISccceeiieeiiecieecee e 16

2.2 PETRINET EDITORS. ... cttiiiiiiiiiie ettt iree et e s s sbae e s svaneesen 17
2.2 1 BASICFEAUIESeeee ittt 17
A T I = 101 ST 17
2.2.1.2 Editing capabilIties...........coveiiieire e 17
2.2.1.3 Petri NetS SUPPOITEdcccoeeiiieiieierieieeie e 19

2.2.2 Hierarchical Petri NEtS........coceeivcviie et 19
2.2.3 ANAIYSIS......eeieeee e nns 20
2.2.3.1 Invariant ANalYSISc.eeieeeiieeiieesiee e see e 21

WA A e (SN 0T 110°= 1 £ 22

G B] S 1] 23
3.1 OUTLINE SPECIFICATION ..uuuuuuuennnrnnrinnsssnssassnns 23
3.1.1 General Properties.......ccceeeieeiienienie et 23
3.1.2 EQItOr PrOPertiS......cccceiuieiiiieeiieeieeie et 23
3.1.3 Hierarchical Petri Net Properties..........cccceveevieeiieeciee e 24
3.1.4 Open ArChiteCtUrE........c.cocvieiie e 24
RN T (=l o 0= | R 25

3.2 JAVA PROGRAMMING LANGUAGEuuvtierinniiissssssas s sssnnes 25
3.3 CLASS DESIGN ..uuuuuiii s as s a s annnnnes 25
3.3.1 An Object Oriented Petri Net.........cccoeveevieenieiieenee e 25
3.3.2 Graphical User Interface Design........cccccceeveeeieeiieccee e 26

3.3 OPEN ARCHITECTURE DESIGNvviiiiiiiiiieeicireee e siteeessssiveeesesvaeeesens 29
3.4 FILEFORMAT DESIGNccoiiiittriiieee e e eecirtree e e e e e esistrae e e e e s e e e nnsrnneeee s 29
AIMPLEMENTATION ..ottt 35
4.1 IMPLEMENTATION OF PETRI NET CLASSES ...uvvtiiiieeeeieiitrrreeeeeeeeeeennnnees 35
4.1.1 Implementation of PetriComponentcoooeevereeneenenieeseeneens 35
4.1.2 Implementation of An Object Oriented Petri Netcccoeeeneee. 36

4.2 GRAPHICAL USER INTERFACE IMPLEMENTATION ...ooovviiiiiiiiiiieeeeeeeeee, 38
4.2.1 SNiNG COMPONENES......ccveiiiieirieieeereeseeesteeseeesteesreesreesreesreeenns 38
4.2.2 Interaction of Petri Net Classeswith User Interface.................... 40

4.3 HIERARCHICAL PETRI NET IMPLEMENTATION ..uvvvieeiiireeeeesiieeseesneeeas 44

4.3.1 INtEraction POINES........cccviieiiiiiiiec ittt saae e 44
4.3.2 Addition Of SUDNELS.........eoiiiiiiiiiec e 46
4.3.3 Switching between levels of the subnet............cccce e, 46

4.4 OPEN ARCHITECTUREcooiiiiiiiieeee ettt 49
4.5 INVARIANT ANALYSISMODULE.......coooiiiiiiiiiieeeeee e 52
4.5.1 Invariant AnalysisS Algorithmcccocvveiiecieccc e 52
4.5.2 InvariantDIialOg........ccccveeieeiieiee e 54

A B FILE FORMAT .ottt ettt e e e e e ab e e e e e e e e s saaab e e e e e e e e e e e ennnnarens 54
S5RESULTS& CASE STUDIES ...ttt 57
5.1 BASICEDITOR FEATURES......uttttiiieeeeiiiiiirtreeeee e s e eesissreeeeeeseeenssssnseeesens 57
5.2 HIERARCHICAL PETRI NETS et 58
5.3 OPEN ARCHITECTUREuuuuutiniiiniiinninnsnsnnssnsssnsssssssssssssssssssssssssssssssssssnns 61
5.4 INVARIANT ANALYSISMODULE......uuuuuiinssssnsssnsasssssnssanes 61
6 CONCLUSION & FUTURE WORK ...ovviiiiiiiecceieeee et 67
6.1 GENERAL FEATURES......ccttttteeieeeeeeeeeeeeeeseesesemeessssssssesesssssssssssssereesremens 67
6.2 HIERARCHICAL PETRI NETS ..uiiiiiiiiiccccieieee et 67
6.3 OPEN ARCHITECTUREcoitttttieieeeeeeeiitrtreeeeeeeessssassssseesesessssssssssssssssens 68
6.4 INVARIANT ANALYSISMODULEccccitttiiieeee e eciirrreee e e eeninrnneee e 69
ORI T = Y o 69
6.6 CONCLUDING REMARKScvvvviieeiiereeeeeeeeeesesessessesesssesesssseesseeseesseeeeemee 70

7 BIBLIOGRAPHY ..ottt ettt e e e e e sasaaae e e e e s s e e 71
7.1 BOOK & JOURNAL REFERENCEScvvvveeeeeeereereereeeeeeereeeeeeeeeeeseeeseeeeeeeees 71
7.2 URL REFERENGCES.....ccuuttteetteeeeessssssessssssssssessmssssssssssessessmeesmmemm 72
7.3 TOOL REFERENCESciiititttitiiieeeeeeeiiitareee e s e e s s essbassseeseeessessssssnseneaeas 72

I AN ot N 5 1 RO 74
O USER GUIDE ..ottt e e 75
O.1 GETTING STARTED....uuuuinsssnssansssnsssnns 75
S0 0 I 07 To [o [P OSRPR R R ORI 75

O I B g (= LS ol == o P 75
Components of the User interface..........ccoveeeeieeccec e 75

9.2 DESIGNING A SIMPLE PETRINET .cooiiicteeeeee et 76

LS 220 2V o [0 I o= 79

O I o) (= LR 81

0.3 SUBNET Sttt s s s s s s s s s a s s s s s snsssnsssnsssnssnnns 82
9.3.1 AddING SUDNELS ..o 82
9.3.2 Subnet INteraction POINES..........coocviieiieiiiee e 84
9.3.3Editing @ SUDNEL.........occvieeieeee e 85
9.3.4 Saving Hierarchical Petri NEtS........ccccoevceeveeiieese e 86

9.4 EDITING PETRI NET COMPONENTS .. .uuuuutinniirnnninnsisnnssnsssnsssssssassssssnnes 87
9.4.1 Editing Trangitions, Places and SUDNELS...........cccccccveveevieeneeennne. 87

0. 4.2 EQITING AICS ..ttt 90
9.4.3 Removing Petri Net Componentscccceeveeeiieeseeecee e 90
9.4.4 Opening, Saving and New FileS.........ccccocveevee e 91

9.5 PETRI NET ANALYSIS— OPEN ARCHITECTUREuvviriieieeeeeeeiirrneeeeens 92
9.5.1 MOAUIE INEEITACE.....eeeeiieee ettt 92

9.5.2 Loading an AnalySisModUule.............ccoeeevieeiieecieece e
9.5.3 Running An AnalySISModUIE...........cccoeeviieeiie e

9.6 INVARIANT ANALYSISMODULE

1 INTRODUCTION

1 Introduction

Petri nets are popular modelling technique used in many disciplines including
the design of concurrent systems, communication protocol design and
analysis (Woodside & Li, 1991), and the modelling of manufacturing systems
(Ciardo & Trivedi, 1993).

There are a number of Petri net editor tools available, offering a range of
features from simple editing to complex simulations. Petri net editors
provide only limited support for hierarchical Petri net design, where by a
system is decomposed into a set of Petri nets rather than a single net. Such
approaches simplify system design, because different components of a

system can be designed and modelled individually.

Petri net properties such as liveness, safeness and boundedness, can be tested
for all Petri nets. Petri net editor tools often provide built in analysis features
to verify these properties. However these are often limited and may not

provide the analysis required.

The aim of this project is to design and implement a Petri net editor that will
address the current lack of support for hierarchical Petri nets and the
limitations of analysis features in current editors. Support for hierarchical
Petri nets requires a suitable graphical representation of hierarchical Petri
nets and the ability to navigate around a hierarchical Petri net.

To address the limitations of Petri net analysis features offered by Petri net
editors, the editor will incorporate an open architecture, allowing the dynamic
loading of separately implemented analysis features. This will enable users
to dynamically load analysis features as desired, even offering users the

opportunity to implement their own analysis features.

1 INTRODUCTION

Chapter two introduces the background of Petri nets, their properties and
analysis techniques. The features offered by existing Petri nets editors are
also investigated in this chapter. This is followed by the Design chapter,
which discusses the Petri net editor’ sdesign issues. Implementation (Chapter
4) describes how the designed editor was implemented. The features of the
implemented editor are then tested and discussed with a number of case
studies in the Results (chapter 5) and Conclusion (Chapter 6). A user guide
for Predator, the Petri net editor tool implemented is provided in chapter 9.

2 BACKGROUND

2 Background

This chapter begins by introducing the origin of Petri nets and their basic
structure. Hierarchical Petri nets are then introduced before the genera
properties of Petri nets and analysis techniques to study them. The second
part of the chapter considers the properties offered by existing Petri net
Editing Tools and discusses the capabilities required by the Petri net Editor to
be developed as part of this project.

2.1 Petri Nets

2.1.1 Development of Petri Nets

In 1962 Carl Petri invented Petri nets (http://www.informatik.uni-
hamburg.de/TGI/mitarbeiter/profs/petri_eng.html). They have become a

widely used modelling technique for systems including Concurrent,
distributed and parallel. They have applications in other fields for example
manufacturing, where they model flexible manufacturing systems (Ciardo &
Trivedi 1993).

Petri nets are mathematical descriptions of systems. They consist of four
basic elements: transitions, places, arcs and tokens. Transtions and places
are described by sets. Arcs connect transitions and places, and are described
by backwards and forwards incidence functions, often termed arc weights,
which relate to the movement of tokens between places. Tokens are
associated with places and the initial marking describes the initial number of
tokens on each place. Markings, the number of tokens on each place,
represent subsequent system states. Figure 1 displays the formal definition of
a Petri net.

2 BACKGROUND

PN=(P,T,I,I", M)

Pisafinite set of places

T isafinite set of trangtions
PnT=0

I is the backwards incidence function
I" is the forwards incidence function

Moistheinitial marking.

Figure 1. Formal Definition of Place Transition Petri nets

Transitions are the active elements of Petri nets, they can be enabled and
once enabled can be fired. The backwards incidence function determines the
number of tokens required on an input place before a transition is enabled.
For example for an arc from a place pl to atrangition t1 with an arc weight of
3, three tokens are required on place pl before the trangition is enabled. A
trangition is enabled when this is satisfied for all input places. Upon firing,
tokens on all the input places are destroyed and created on all the output
places of thetransition. The number of tokens destroyed is determined by the
arc weight; likewise the number of tokens crested on each place is
determined by the forward incidence function. This basic Petri net structure

is often referred to as a Place Transition Net (Bause & Kritzinger 1995).

The usability of Petri nets is extended by the ability to express them
graphically as shown in Figure 2, which illustrates the readers-writers
problem. Graphical display simplifies net design, as nets can be constructed
using a graphical editor. Their graphical nature also enables Petri nets to be
animated allowing visual observation of how systems function.

2 BACKGROUND

Figure 2. The readers writers problem. The readers-writers problem is a common
problem associated with concurrent access to files and data. For example a shared
database can be accessed by Readers, who obtain data from the database and Writers
who both obtain and write data to the database. Multiple readers can access the
database concurrently but writers must have exclusive access. Place p0O specifies the
number of Readers not reading, while pl represents Readers that are reading.
Transitions t0 and t1 move readers between these states. Similarly place p3
represents the number of Writers not writing, p4 the number of Writers writing and
transitions t2 and t3, control movement between these two states. Place p2
represents a semaphore that controls access to the file/database.

There are now many variations of Petri nets they are mostly extensions of
Place Transition Nets. Variations include coloured Petri nets, which
introduce different coloured tokens, fluid stochastic Petri nets, which instead
of tokens associate a level of liquid with places and condition event nets, in
which places represent conditions, the presence of a token satisfying the

condition. Timed Petri nets introduce the concept of time.

Place transition nets lack the concept of time; it is not known at what time a
trangition will fire. To perform quantitative analyses on the performance of a
Petri net, timing is required as part of the model. Time can either be
introduced into a Petri net by specifying sojourn times of tokens on places or
associating firing delays with enabled transitions. For the former, tokens
generated on places are unavailable for a set time. In the latter case, enabled

10

2 BACKGROUND

transitions wait a firing delay before firing. Such nets are Timed Transitions
Petri nets.

Stochastic (Molloy, 1982) and Generalised Stochastic (Arjmor et al., 1984)
Petri nets are widely used Timed Transition Petri nets. Generalised Stochastic
Petri nets further split transitions into two subsets. Timed transitions fire
after random exponential firing delays, while immediate transitions fire
instantly once enabled. A weight is associated with immediate transitions, it
determines the probability of firing if multiple immediate transitions are
enabled in the same state. (Bause & Kritzinger 1995).

2.1.2 Hierarchical Petri Nets

Since Petri nets were not originally conceived of as hierarchical structures,

Hierarchical Petri nets are not widely supported by Petri net Tools.

By contrast, Process Algebras, such as Performance Evaluation Process
Algebra (Hillston, 1996, PEPA homepage: http://www.dcs.ed.ac.uk/pepa) are

mathematical calculi for modelling concurrent systems in a compositional
way. Compositional approaches allow the decomposition of systems into
smaller components, making it easier to model complex systems (and in
some cases also easier to analyse if the compositional nature of the system

can be exploited).

Providing support for hierarchical structuresin Petri nets not only makes the
design process cleaner and simple (and more similar to approaches of
classical software engineering methodologies), but also alows for
compositional analysis techniques from the Process Algebra community to be
applied to Petri nets.

Process algebras are textual and based on process calculi, making them
relatively difficult to define, whereas Petri nets are easily expressed in a

11

2 BACKGROUND

simple graphical way; thus the application of compositional approaches to
Petri nets could be advantageous to system designers.

2.1.3 Properties of Petri Nets

Petri nets exhibit properties, which can be verified. Liveness, safeness and

boundedness are three important properties of Petri nets.

A net islive, if it is not possble to reach a marking from which a transition
will never again be enabled. This means that whatever state or marking the
system is in, there will always be a firing sequence such that any transition
can be fired from that state. Live systems are free of deadlock and livelock.
Livelock occurs when a system is stuck in a subset of states that does not
include all transition firings, some functionality of the system can be
permanently disabled. Liveness is desirable in most systems because
deadlock is avoided and the complete system is always accessible.

A placeis safeif in al possible markings, the number of tokens on the place
IS never greater than one. A Petri net is safe if all places in the net are safe.
Safeness is of importance for places that represent conditions. There are two
possible states; the condition is either satisfied (token on place) or not
satisfied (place empty). It does not make sense for a condition to have more

than one token.

Boundedness generalises safeness. A place is k-bounded if in all possible
markings, the number of tokens on the place is never greater than k. Further
a Petri net is k-bounded if in all possible markings, and for al places, the
number of tokens on a place is not greater than k. Boundedness determines
that in all markings each place contains a finite number of tokens.

Boundedness isimportant to prevent buffer overflows in systems.

12

2 BACKGROUND

2.1.4 Petri Net Analysis

Petri nets analysis ranges from the ssimple animation of firing sequences to
complex performance analysis. This section briefly describes some of the
more common analysis techniques. As an anaysis module to perform
Invariant analysisisto form part of the project, it is described in more detail.

2.1.4.1 Animation — Token Game Animation

Token Game animation provides the simplest analysis of Petri nets. A Petri
net startsin itsinitial state with all enabled transitions indicated for the user
to select one to fire. When a trangition is fired tokens are moved accordingly
and the process is repeated, another enabled transition can be selected. This
type of animation does not provide any definite information on the systems

but can be an effective way to view trangition firing sequences.

Figure 3. Example of Token Game Animation. A) Place pO has five tokens, so
transition tO is the only enabled transition, which is indicated by its colour. tO is
fired, removing one token from p0 and adding one to p1 as shown in B.

B) Place pl now aso has a token, so both transition t0 and t1 are enabled as
indicated.

2.1.4.2 Correctness Analysis

Correctness analysis techniques verify Petri net properties liveness, safeness
and boundedness. Invariant analysis and reachability tree analysis provide
techniques for verification of these properties.

13

2 BACKGROUND

P invariants

A pO+pl=15
B pl+p2+15p4 =15
C p3+p4=15

P invariant Explanations

A states that the sum of the number of token on places p0 and pl is
equal
to fifteen in all reachable markings of the net. i.e. the total number
of readersis constant

B Similarly states that sum of tokens on pl,p2 and 15 times p4 is
always equal to 15.

C The sum of tokens on p3 and p4 is aways equal to 15. i.e. Thetota
number of writersis constant.

T invariants
D t0,t1
E t2,t3

T invariant Explanations

D The firing sequence t0,t1 returns the system to the marking it wasin
before the firing sequence. In this case moving a Reader from the
state of not reading to reading back to not reading or from reading,
to not reading back to reading.

E This sequence performs the equivalent as D but for awriter.

Boundedness, Liveness Properties of the system

Bound — the Petri Net is covered by P invariants because all of the placesin
the net appear in at least one P invariant. This means that the net is
bounded.

Boundeded & Live, - A bounded and live net is covered by T invariants.
This net is covered by T invariants, however this doesn’t infer that the net is
bounded & live.

Figure4. The P and T invariants of the Reader-Writers Petri net. This figure gives
the P and T invariants of the Readers-Writers Petri net (Figure 2). An explanation of
each invariant in relation to the Readers-Writer exampleis also given.

14

2 BACKGROUND

Reachability analysis generates the reachability set (or tree), of a Petri net.
The set starts at the initial marking, with a new marking created for each
trangtion. This is repeated for all new markings until all possible marking
have been covered. It isthen possible to determine if the net is bounded. If

so it isalso possible to determineif the net islive and to identify home states.

Invariant analysis also identifiesif anet is bounded and live. Thisis done by
calculating both P (Place) and T (Trangtion) invariants. P-invariants occur
where for all possible markings the sum of the marking of a group of the
places remains constant. Transition invariants identify order independent
trangitions firing sequences that leave a net’s marking unchanged (i.e. From a

marking M afiring sequenceis followed to return the net to marking M).

To perform Invariant analysis the incidence functions of a Petri net are
converted to incidence matrices. The backwards incidence function is
converted to the backward incidence matrix (C) and the forwards incidence
function to the forward incidence matrix (C"). The incidence matrix C is the
result of subtracting C from C* (C = C" - C'). Transition firing can then be
expressed using the incidence matrices. It isthen possible to express firing of

trangitions with the incidence matrices as described below.

From a marking M a firing sequence f is followed, where f is the vector of
the number of times each transition is fired in the firing sequence, the
resultant marking M can be described as:

M =M+Cf

Thusif M™ =M, (i.e. the sequence returns the net to the same marking)

then Cf =0, thusfisaT invariant which leaves the marking M unchanged.

If equation 1 ismultiplied by v 0Z" gives equation 2 below:

VIM =vIM+V' Cf

15

2 BACKGROUND

In this case, if v' C=0thenv' M’ =v' M, OM O R(PN, M) where
R(PN,M) is the set of al possible reachable markings given an initial

marking M. visaPinvariant, P invariants can be found be solving v C = 0.

From Pand T invariantsit is possible to determine properties a Petri net, such
as boundedness and liveness. A Petri net isbound if it is covered by positive
P-invariants. This means that all the places of the Petri net must appear in at
least one of the p invariants. The Readers-Writers example Petri net (Figure
3) isbounded as described in figure 4.

A bounded and live Petri net is covered by T invariants. This does not infer
that anet covered by T invariants is bounded and live, however it can be
concluded that a net that is not covered by T invariants is not bounded &
live. The net in the readers-writers example is covered by T invariants.
Other analysis techniques such as reachability analysis must be performed to
identify if the Petri net is bounded and live.

2.1.4.3 Performance Analysis

Performance analysis is possible for Petri nets that incorporate time.
Performance analysis can provide statistics such as the mean number of
tokens on a place, the probability of being in a subset of markings, the
probability of atransition firing given that it is enabled and the throughput of

atrangtion.

Markov chains can be obtained from a Petri net’s reachability graph. This
enables analytical performance statistics to be obtained. Simulation can also
be used for Performance analysis, however results are not exact and many

simulations are required to have a high confidence in the results.

16

2 BACKGROUND

2.2 Petri Net Editors

There are approximately forty Petri net Tools listed in the Petri net Tools
Data base (http://www.daimi.au.dk/PetriNets/tools/db.html). The

functionality provided varies from the most basic of editors to those

providing sophisticated analysis capabilities. A sample of the editors
available have been obtained and investigated to identify the capabilities
common to Petri net Editors. The editors studied include DaNAMIiCs,
HPSIim, INA, VisObjNet144 and the PetriTool The following sections
discusson the features provided in these and other Petri net tools. The
sources of the other editors referenced are provided in the tools references

section of chapter 7.

2.2.1 Basic Features

2.2.1.1 Platforms

Of all the editors available the majority run only on UNIX operating systems,
afew operate solely on Windows, while fewer still run on both Windows and
Linux operating systems. Tools that are portable are mainly implemented in
Java. Portability of the tool is desirable because few tools run on multiple

operating systems.

2.2.1.2 Editing capabilities

The majority of tools provide a graphical editor for Petri net design, (user
interfaces displayed in figures 5 and 6). A few of the tools such as INA and
the Model Checking Kit are text based. These tools provide greater support
for Petri net analysis rather than design.

The graphical editors investigated all allowed the user to add places,
trangitions, arcs and tokens to Petri nets and provided features to edit and
remove these components. Some provided further options such multiple

node arcs, zooming, and printing.

17

2 BACKGROUND

Ps1 L]

[e Edt ew wandow Took Zem Siulstion Exra ? eS|
DR XsBrE 28 | »

~——— @200 DK
T

Property Yalua
Name Fil
Size: Foemnal
o Hama TRUE
Shiow Capacity TRLE
Iritizl Tok=rs]
Current Tohens o
‘—apacky L
Tekens Count o

PressFL For Help |offire Isc.0 IT. oms StepfCdc Time P, 109, 26 & L00% [C.300L

Figure 5. A screenshot of the HPSm Petri net editor tool. HPSim is a Windows
based tool providing support for Place Transition nets and Stochastic Petri nets. It
offers token game animation and simple performance analysis but no correctness
analysis features. Properties of Petri net components can easily be edited using the
table to the left of the user interface.

f ual Dhject Net ++ Evahiation Version Ladc2
Fi Edt lisw Arange Help

'Elﬂﬂ —'—'rjﬂ | ﬁlm_MICjBKJ@ﬂJJ!I!I

o Fils Laaded | thenged [[[Time: 0 Eklmerts : & 2
Figure 6. VisObjNet144 Petri net Editor Tool. VisObjNet provides similar
functions to HPSIim, Place Transition and Stochastic Petri nets are supported. Token
Game animation, simulation and performance analysis are all incorporated in the
tool. Like HPSIm Petri net component properties can be edited using atable.

18

2 BACKGROUND

2.2.1.3 Petri Nets Supported

All the editors available support Place Transition nets, which is expected as
most Petri net types are extensions of Place Transition nets. Some tools are
designed for particular net types, for example CPN which supports coloured
Petri nets. Due to their extensive use for performance analysis Stochastic

Petri nets are widely supported; at least fifteen tools support them.

2.2.2 Hierarchical Petri Nets

A few Petri net tools provide support for Subnets. Investigation of
DaNAMICS identified that hierarchical models could be designed via the
introduction of subnets. Subnets added have to use an existing file and
appear on the screen as a blank box (figure 7). Interaction points can easily
be chosen but it is difficult to specify which interaction point arcs placed into
the subnet should be connected to. To move between levels the respective
filesfor each level of the net have to be opened separately, making it difficult
to switch between them and identify how the nets interact (figure 7). It was
not possible to investigate any other tools that support Hierarchical Petri nets,
however THORN/DE (Schof, Sonnenschein & Wieting, 1995) provides
hierarchical Petri net support similar to that provided by DaNAMIiCS.

The tools investigated do not provide a suitable graphical representation of
hierarchical Petri nets. A representation that explicitly illustrates interaction
points and how they are connected to higher levels is required to simplify
hierarchical Petri net design. Such a representation should also allow simple
switching between different levels of the Petri net without the requirement of
opening the files associated with each subnet and editing them independently
of the other levels of the net. Provision of such a representation is a central

aim of this project.

19

2 BACKGROUND

. DablARACS L [0[=]
Filk Bl Options Animate Analysis Window Help

[Ptrimet e E B
r
a [Subnet frome — B d
e i Dest, Subnet: s
‘‘--_.____\|:| Subnei IPx
{

Cancel

1] 1 14 |

Figure 7. A DaNAMICS hierarchical Petri net. DaNAMICS provides simple
support for Hierarchical Petri nets. In this example a subnet has been added to a
Petri net, it is displayed as a white filled box. Arcs can be placed between
components of the Petri net and a subnet however it is not clear how to do this.
Upon connecting an arc from the place to the subnet shown above, a dialog (shown
in figure) appears to select the component of the subnet to connect the arc to. It is
not possible to visualise the interaction between the two levels of the Petri net.

2.2.3 Analysis

There is much variation in the analysis options provided by Petri net editor
tools. However, in all cases these analysis features are built into the tools.
Users are limited by the analysis features provided in the tool they use. It
may be necessary to use multiple tools to perform al the analyses required,
this can be problematic if file formats are not interchangeable (see 2.2.4). As
analysis features are built in it is not possible for users to easily specify their
own analysis methods. This may be desirable if unusual systems are being

modelled or a poorly supported Petri net type is being used.

20

2 BACKGROUND

An editor incorporating an open architecture alowing analysis modules (that
implement a simple interface) to be dynamically loaded would provide a
solution to these problems. Users can load modules performing the analysis
they require and could even implement their own modules to perform
specific analyses. The development of such an open architecture is an
important aim of this project. The aim is that modules once dynamically
loaded will add items to a menu of the user interface to run their analysis
features.

2.2.3.1 Invariant Analysis

Invariant analysis is present in a few of the tools available. The output of
such modulesis very similar, for example DaNAMICs, displays P-invariants,
T-invariants, invariant equations and the incidence matrix for the analysed
Petri net as shown in the figure 8. It also reports if both P and T invariants
cover the net, indicating if the net is bounded and live and bounded. The
display of P and T invariants are left in a matrix form from which the
invariants must be interpreted. It would be clearer to express the P and T

invariantsin aformat similar to the P invariant equations (see figure 8).

T aHAMICS Rnauliz Viese
Rz Calculsie

[wvariam |54 Cowmmbiling | % Simulation < Peiform
- Invarmant Fresulis
Thez et 15 covered by P-Invarians

T-Invariand Besulis
Thee met 15 omered by

Irtéarnts.

ncklerce Matrix: Equations
E0Fpl=0
pl+p2 =pém
o3 +0im

L5 T- Imvarianis

0
:

=N =

Transons:
nil; 111303
pd el p2 pd, p4

Figure 8. DaNAMICS Invariant Analysis Output for the Readers-Writers Petri net.
This figure DaNAMICS display of invariant analysis results. P and T invariants, are
displayed in the bottom two areas of the dialog, they are displayed in matrix formed
and need interpretation. The P invariant equations are displayed more clearly.

21

2 BACKGROUND

2.2.4 File Formats

Petri net tools tend to use their own file format. This is very restrictive if
users wish to port Petri nets and use them in different tools to make use of
different analysis and smulation capabilities. There have been some
attempts by the Petri net community to develop a genera interchange file
format (Bastide, Billington, Kindler, Kordon & Mortensen 2000).

A number of groups have proposed possible alternate file formats, al of
which are XML (extensible markup language) based. The use of XML
should make file formats simple to parse particularly as some languages
(Java for example) provide support for XML parsing. Most of the proposed
formats attempt to separate basic net components such as places and
trangitions, from Petri net type specific elements such asinhibitor arcs.

The Petri Net Markup Language (Jungel, Kindler & Weber 2000) is one of
the proposed file formats. A general section contains all the Petri net type
independent data (i.e. places, transitions and arcs), while a separate Petri net
Type Definition specifies specific details for different Petri net types. Other
proposals include, the use of style sheets to separate style and content
(Mailund & Mortensen 2000) and a two level data definition language
(Valente & Gribaudo 2000).

A generic file format has yet to be chosen, so this project will aim to use a
file format based upon the current proposals but extended to provide support
for Generalised Stochastic and hierarchical Petri nets. This will ensure the

fileformat is close to any interchange format eventually chosen.

22

3 DESIGN

3 Design

Thefirst section of this chapter provides an outline specification summarising
the aims and features intended for the Petri net editor. Subsequent sections
discuss programming language choice, object oriented class structures, open

architecture design and file format design.

3.1 Outline Specification

The two previous chapters have stated the aims of this project and the
features present in Petri net Editors. These have been combined to provide
an outline specification of the Petri net editor tool, that this project ams to

develop.

3.1.1 General Properties

The tool should be portable. Many existing tools are operating system
specific — in fact most are limited to specific brands of UNIX (e.g. Linux,
Solaris), so it would be beneficial to operate on a wide range of Windows and
UNIX platforms.

3.1.2 Editor Properties

Thetool should provide the basic features necessary to design and edit a Petri
net. Further features such as zooming and printing should be considered
optional, and could be added at a later date. Support for hierarchical Petri
nets (3.1.3) and an open architecture (3.1.4) are of greater importance to the
project. Places, transitions and arcs should be able to have their properties

23

3 DESIGN

such as token number, firing rate and weights modified. It should be possible
to change the position of components on the net and to have the ability to
delete components.

3.1.3 Hierarchical Petri Net Properties

The tool should support hierarchical Petri nets such that interactions between
different levels are explicit, and can be switched between effectively. For
example clicking on a subnet could cause it to be loaded and displayed by the
editor. Interaction points could be identified by painting them a different
colour and by displaying them on the outside of the subnet, to show how the
Petri net interacts with subnets.

When subnets are introduced users should be able to select what Petri net the
subnet contains. There should further be the choice to save the subnet using
the already selected file or to save it under a different name specifically for

use in the current design.

3.1.4 Open Architecture

The tool should provide an open architecture for the dynamic loading of
analysis modules. The interface required for such modules should be simple,
for example using a commonly named function to execute and run the

module.

An analysis module, for invariant analysis will be implemented to illustrate
the capabilities of the open architecture. The invariant analysis module
should provide data on both P and T invariants and the boundedness and
liveness of Petri nets, similar to that provided by DaNAMICS.

24

3 DESIGN

3.1.5 File Format

A file format closely following proposals for an interchangeable file format
(see 2.2.4) should be designed. It should support Hierarchical Petri nets, and
should enable tools that use this file format but do not support Hierarchical
Petri netsto parse it correctly as a single level Petri net.

3.2 Java Programming Language

For the implementation of an object-oriented tool, the two main choices of
programming language are C++ and Java. Java is more suitable for this
project. Unlike a C++ implementation a Java implementation will be
portable operating on multiple platforms. Java also provides Reflection (See
section 4.4) away to load Java classes into an executing program, which will
be necessary for the design of the open architecture. Java also offers XML
support, which will be useful for implementation regarding the file format.
Javaisthe clear choice for the implementation and the following sections and

chapters will assume this.

3.3 Class Design

This section discusses possible class structures for the Petri net Editor,
starting with the basic classes required to represent a Petri net.

3.3.1 An Object Oriented Petri Net

How should the components of a Petri net be modelled as classes in a Petri
net Editor? Places, transitions and arcs, are obvious choices for classes.

25

3 DESIGN

Likewise subnets should be another class. Figure 9 displays a class structure

design representing a Petri net as a group of classes.

An abstract class, PetriComponent, forms a base class from which all other
Petri net components, inherit. PetriComponent will provide data members
such as position and name, and functions for adding and removing
components from a Petri net. Tokens and arcs inherit directly from
PetriComponent. Transitions, places and subnets on the other hand, share
more features in common that with arcs so they inherit from
SolidPetriComponent. For example these components have dimensions, and
can be connected to arcs.

The classes Timed and Immediate transitions provide the two subsets of
trangitions present in Generalised Stochastic Petri nets. However ther
similarities are contained in Transition, which they both extend.

Tokens are described as a class, but they could also be an attribute of the
Place class. They have been assigned a class because it will be ssmpler to
manipulate token position, addition and removal via a separate class, rather

than as part of the Place class.

3.3.2 Graphical User Interface Design

The graphical user interface requires all the features that any typical graphical
user interface requires, such as menus and toolbars. The section briefly

describes the elements that will make up the user interface.

The design or drawing area will form the largest area of the user interface, it
is here that Petri nets will be created and edited. To perform functions in the
design area one of the options such as transition or edit will be selected.
These options will be displayed in a toolbar, preferably adjacent to the
drawing area. A further toolbar will provide file opening and saving options.

26

3 DESIGN

“pRtETdETp e a0 AAR] SIOTNIM PR STACUISIT BIER WITIL) ADI0 AR 2 10
“SuaY{0] PR 501 ‘SUOIAEY ‘saaed apramoduio e Jo siswnoalapl Wad Y o#ay LGag v cof wodfoyT eeopn enbmwiyoa] Sunpepopy pefGo g emSy

AT 5 WOty T

JUT EpET e b a0
UG AL L WA [apeTpumry
_ 7 _
ea]ooq i JaIly
WES] 00 (P ER{ A0
27 WOTACEL |, _ jenrgng _
sy _ | srvmrens | | |
_ [
WELY 42
JUT P{2Tau HEY
2y wo neauodur o) toag pog
woqIeog
AUE L] AN ETNERIER
frTE T T o TR Y

27

3 DESIGN

A status bar will be placed at the bottom of the user interface to provide

information to the user.

Some editing features such as changing arc weights or transition firing rates
cannot be carried out in the drawing area alone, because input needs to be
obtained from the user. Dialogs are often used to obtain such information,
however it would be inconvenient if a dialog appeared every time a small
feature needed changing. It is ssimpler to place a table in the user interface
that can display the required details and allow the user to edit them. This
method is used effectively in other Tools, such as HPSim and VisObjNet (see
figures5 & 6).

The GUI will provide features to edit Petri nets, such as moving the position
of components and modifying components properties such as token number
and weights. Figure 10 displays a possible class structure for the editing
features. A different class encapsulates each of the different editing
features. These classes all extend the same base class, EditClass. This class
will provide functionality to interact with the design area. This design will
simplify the addition of further editing features because they can be added by

the implementation of anew class, extending EditClass.

EditClass

Eenwvel olen Edit EditAxres E ditSub et Inieras tionPoint

Figure 10. The Editing Classes of a Petri Net Editor. ThisOMT diagram provides a
possible class structure for classes implementing the editing features of a Petri net
editor. Each editing class encapsul ates a different editing feature, for example
EditArcs will be used to modify arc positions and weights, while EditSubnet, will
provide operations to edit a subnet and itsinteraction points. Each of the
editingClasses extends the same base class, EditClass. The class will have abstract
functions to respond to the mouse being pressed, dragged and released. Each of the
editing classes will have to implement, these functions. This design will simplify
the addition of further editing features, which can be implemented in a new class,
which inherits EditClass.

28

3 DESIGN

The Java implementation for the user interface is described in detail in

chapter four section 2 (4.2).

3.3 Open Architecture Design

The open architecture design must allow analysis modules that perform
differing analysis operations to be dynamically loaded and executed by the
editor. Modules have to follow an interface, to ensure that they implement
the functions that the editor will invoke to run their analysis functions. The
interface design is simple so as not to restrict the varying analyses that
modules can perform. The simplest interface requires two functions, one to
return the name of the module and another to execute analysis.

Once dynamically loaded analysis modules will need to obtain the details of
the Petri net being edited. It is simplest if the Petri net is saved to a set file
name, which can be specified in the interface. Modules will then know
where to locate the file associated with the Petri net they are to analyse.

3.4 File Format Design

None of the proposed Petri net interchangeable file formats (see 2.2.4)
support hierarchical Petri nets. It was therefore necessary to design a file
format that closely follows the proposals but also provides a format to save
hierarchical Petri nets.

A natural way to save a hierarchical Petri net is for each net to have its
contents saved in a separate file. Where a Petri net includes a subnet, the
subnet can be specified by providing the file name for the subnet. However
if the file format is to be used by other Petri net editor tools, that don’t

29

3 DESIGN

support hierarchical Petri nets, files couldn’t be transferred between different
tools. It was therefore necessary to design a file format that would
hierarchical Petri nets to be flattened and saved as a single file, making them

more accessible to other tools.

One of the proposed Petri net interchange file formats, The Petri Net Markup
Language (PNML) provides a simple XML format for specifying places,
trangitions and arcs, a smple example is shown in figure 11. This format
formed the basis of the file format that was designed. The format for the arc
was not altered. The format for places and transitions needed modifying to
identify if they are interaction points. An interaction tag was added to
distinguish components as interaction points (figure 13— the transition is an
interaction point). The transition format required further modification
because the PNML does not alow for timed and immediate transitions
present in Generalised Stochastic Petri nets. Attributes for type and weight
were added for immediate transitions and type, distribution and rate for timed

trangitions (figurel2).

A new structure had to be designed to accommodate subnets. A subnet tag
was added (figures 13 & 14). The name of the subnet is provided as an
attribute of this tag. For subnets that relate to different Petri net files, a
location tag provides the location of the file (figure 14). If aHigh level Petri
net is saved in a flattened form, the contents of the subnet are contained
within a contents tag (as shown in figure 13), which is nested within the
subnet tag. Also nested within the subnet tags are graphics and position tags,
which are used in the same way as for transitions and places to specify the
subnet’s location. Offset tags are also nested within the subnet tag, they
specify the locations of the subnets interaction points when they are shown

on the higher-level net.

30

3 DESIGN

<?xml version="1.0" encoding="UTF-8" ?>
<pnml|>
<transition id="t0">
<graphics>
<position x="89" y="157" />
</graphics>
<name>
<value>t0</value>
<graphics>
<offset x="-2" y="-2" />
</graphics>
</name>
</transition>
<place id="p0">
<graphics>
<position x="300" y="170" />
</graphics>
<name>
<value>p0</value>
<graphics>
<offset x="298" y="168" />
</graphics>
</name>
<initialMarking>
<value>0</value>
<graphics>
<offset x="315" y="185" />
</graphics>
</initialMarking>
</place>
<arc id="a0" source="t0" target="p0">
<graphics>
<position x="95" y="171" />
<position x="315" y="188" />
</graphics>
<inscription>
<value>1</value>
<graphics>
<offset x="120" y="196" />
</graphics>
</inscription>
</arc>
</pnml>

Figurell. An example of a Petri Net Markup Language File. The above
sample file specifies a place, atransition and an arc from the transition to the
place. The Petri Net markup language allows an name, position and text
position to be saved for transitions, while places also have ther initial
marking (token number) saved. The source and target of an arc, its start and
finish positions and the arc weight are saved within the Arc tag.

31

3 DESIGN

a)
<transition id="t0" type="timed" distribution="exponential"

rate="1.0">
<graphics>

<position x="89" y="157" />
</graphics>
<name>

<value>t0</value>

<graphics>
<offset x="=2" y="=2" />
</graphics>
</name>
</transition>

b)

<transition id="t0" type="immediate" weight="1.0">
<graphics>
<position x="113" y="78" />
</graphics>
<name>
<value>t0</value>

<graphics>
<offset x="-113" y="-78" />

</graphics>
</name>
</transition>
</pnml>

Figure 12. XML format for Transitions. @) The format for a timed transition.
Attributes have been added to the transition element. Type identifies that the
transition is timed, attributes also identify the distribution and firing rate of the

transition.
b) The format for an immediate transition. The type is set as immediate and the

weight is specified using the weight attribute.

32

3 DESIGN

<?xml version="1.0" encoding="UTF-8" ?>

<pnml|>
<subnet id="subnet0">
<graphics>

<position x="188" y="148" />
<size w="50" h="70" />
</graphics>
<contents>
<transition id="t0" type="timed"
distribution="exponential" rate="1.0">
<graphics>
<position x="89" y="150" />
</graphics>
<name>
<value>tO0</value>
<graphics>
<offset x="=2" y="=2" />
</graphics>
</name>
<interaction />
</transition>
<place id="p0">
<graphics>
<position x="238" y="146" />
</graphics>
<name>
<value>p0</value>
<graphics>
<offset x="236" y="144" />
</graphics>
</name>
<initialMarking>
<value>0</value>
<graphics>
<offset x="253" y="161" />
</graphics>
</initialMarking >
</place>
<arc id="ab" source="t0" target="p0">
<graphics>
<position x="95" y="164" />
<position x="253" y="159" />
</graphics>
<inscription>
<value>1</value>
<graphics>
<offset x="0" y="0" />
</graphics>
</inscription>
</arc>
</contents>
<offset x="162" y="119" />
</subnet>
</pnml>

Figure 13. A “flattened” Petri net file containing a single subnet. The subnet is the
Petri net specified in figure 11. Its contents are listed between the <contents> tag.
The offset tag just before the subnet end flag (</subnet>) specifies the location of
the subnet’ s transition (which is an interaction point), when it is viewed at the higher

level.

33

3 DESIGN

<?xml version="1.0" encoding="UTF-8" ?>

<pnml>
<subnet id="subnet0">

<graphics>
<position x="188" y="148" />

<size w="50" h="70" />

</graphics>
<location file="H:\msc\IndividualProject\XML thesis

files\pnml figure.xml" />
<offset x="162" y="119" />

</subnet>
</pnml>

Figure 14. A non flattened Petri net File. This is the equivalent non flattened file
format for the flattened file format of figure 13. The subnet contents are not listed in
this file but the location of the subnet file is given from which its contents can be

obtained.

34

4 IMPLEMENTATION

4 Implementation

The first section of this chapter will address the implementation of the Petri
net classes and their incorporation into the Graphical user interface. The
following section describes the user interface implementation in more detail.
The third section discusses implementation of the open architecture followed
by the implementation of the invariant analysis module. For clarity the
implemented classes, Java classes, data members and functions are printed in
a Courier font, functions are distinguished by functi onNanme()

irrespective of their number of arguments.

4.1 Implementation of Petri Net Classes

4.1.1 Implementation of PetriComponent

Possible Petri net class structures were described in the previous chapter,
Petri net components were designed to all inherit a class, PetriComponent.

This section describes the implementation of the Pet r i Conponent class.

The Pet ri Conponent class incorporates the features common to all Petri
net components. Petri net components al have a position, name and text
position, so these are provided as data members of Pet ri Conponent . Petri
net components also need to interact with the design area (see 4.2.2) s0
functions (st art Pos(), setPosition() and finishDraw()) were
added to Pet ri Conponent to provide implementation to do this. Finally
Petri net components need to be able to paint themselves and when being
saved write their details to file, so the functions pai nt Conponent () and
witeToFil e() were aso added to Pet ri Conponent. These main data
members and functions of Pet ri Conponent are displayed in figure 15.

35

4 IMPLEMENTATION

public abstract class Petri Conponent inplenments Observer {
Coor di nat es position;
String nane;
Coor di nat es text Position;
public abstract void startPos(Coordi nates startPos, Drawer d);
public abstract void setPosition(int x, int y);
public abstract void finishDrawDrawer d);
public abstract void pai nt Conponent (G aphics Qg);

public abstract void del et eConponent (Drawer d);
public void witeToFile(FileWiter out){

Figure 15. The main data members and functions of the PetriComponent class.
Position, stores the position of the component in the design area. Likewise the
textPosition stores the position that a component’s name is displayed relative to its
position. Name stores the name of a component. StartPos() is called to set the
initial position of a component when the mouse is pressed (See next section),
setPosition() is called when the mouse is dragged and finishDraw() when the mouse
isreleased. PaintComponent(), provides implementation to paint the component and
deleteComponent() provides implementation to delete Petri Net Components.
WriteToFile() isimplemented to write a component’ s details to file.

The individual characteristics of Petri net components also need to be
represented, the next section considers what Petri net components need to
know about the other components of a Petri net and how this was

implemented.

4.1.2 Implementation of An Object Oriented Petri Net

What do the components of a Petri net need to know about each other?
Figure 9 demonstrates the relationships between the Petri net component
classes but how should these be implemented? Transitions are the active
component of a Petri Net, they need to be able to determine if they are
enabled and cause change when they are fired. To identify if a trandtion is
enabled it must therefore be aware of the arcs that input into it. The arcsin

turn then need to be aware of the places to which they are connected to

36

4 IMPLEMENTATION

identify if there are sufficient tokens on the place. Alternatively transitions
could aso be aware of the places that the arcs are connected to. However
such a design introduces redundancy because both arcs and transitions would
need to store references for the places that arcs connect to. Similarly when
firing, transitions need to know the output arcs connected to them and in turn

the arcs must be aware of the places to which they are connected.

For this reason, arcs (implemented in the Ar ¢ class) contain a reference to
their source and target, while the Tr ansi ti on class has lists (Vector class
used) of references to input and output arcs. A single list is not used because
the operations performed on input and output arcs are always different, so it
is more efficient than working over a single list and testing each arc to

identify if it inputs or outputs to the transition.

From this perspective places do not need to be aware of the arcs that connect
them, because they do not perform any operations on the arcs connected to
them. This arrangement would be suitable in some cases, however as a
graphical editor is being designed it is not. The graphical editor allows
places and other components to be moved and manipulated; so when a place
is moved, the arcs connected to it must also move. Places therefore also

contain lists (Vector class used) of input and output arcs.

As described in Design, places and transitions share similarities such as
dimensions and the ability to have arcs connected to them. These similarities
were encapsulated in the SolidPetri Conponent class (extends
Pet ri Conponent), which provides implementation to add and remove arcs
and to modify component position (see figure 16).

The Token class inherits from Pet ri Conponent . Places need to be able to
access the tokens on them, so they are stored as elements of a Vector,
t okens, inthe Pl ace class. A separate data member to store the number of

tokensis not required as this can be obtained from the size of the vector.

37

4 IMPLEMENTATION

public abstract class SolidPetri Conponent extends Petri Conponent {
Vect or out put Arcs;
Vect or inputArcs;
Di mensi ons si ze;
Edi t Poi nt north, east, south, west, centre;
bool ean i nSubnet ;
bool ean i nteractionPoint;
Coor di nat es net Posi ti on;
public void renoveArcs(Drawer d){}
public void addEditPoints() {}
public Vector getEditPoints () {}
public void update(Cbservabl e obs, Object obj){}
publ i c bool ean i sOn(Coordi nates c) {}
public void addArc(Arc a, boolean input) { }
public void updat eArcPositions(){}
public void setlnteraction(){}

public void setlnteractionPosition(lnteractionPoint ip){}
public void swi tchPosition()({

Figure 16. The main data members and functions of the SolidPetriComponent
Class.

4.2 Graphical User Interface Implementation

The first section provides a brief overview of the swing classes used and
extended in the design of the user interface. The subsequent section
describes how, these components interact with the Petri net classes described

in above.

4.2.1 Swing Components

The Java swing library was used to implement the Graphical User Interface
(GUI). Figure 17 displays the class structure used for the GUI
implementation. The frame of the user interface is implemented in the
Edi tor Frane class, which extends JFranme. The design area is

implemented in Drawer, which extends JPanel. A further JPanel,

38

4 IMPLEMENTATION

j Panel 4, contains the class j Tool Bar 1, which extends JTool Bar and
implementsthefile toolbar. JPanel 2 contains JBut t ons, which are used to
select editing options. An instance of Jt abl e is used to provide the editing
table, which uses the abstract table model Tr ansi t i onTabl eModel .

A JSpl i t Pane instance covers most of the user interface area. Thereis a
Jscrol | Pane on each side of the splitPane, which contain the design area
on the left and the editing table on the right. This enables the size of the

design area and table to be modified and makes both of them scrollable.

A JLabel ingtance is used to provide both the statusBar and the
posi ti onBar. Tablel summarises the classes that the main components of

the user interface either extend or are instances of.

Class Name Function Java Class
EditorFrame GUI frame JFrame
Drawer Drawing area JPanel
JPanel 1 Editor toolbar (for editor functions) JPanel
JPanel2 Contains FileToolBar JPanel
FileToolBar Buttons for file functions (open, save etc) = JToolBar
StatusBar Output information to user Jabel
PositionBar Display position on draw area (Drawer) | Jabel
JFileChooserl Display dialog for JFileChooser
JmenuBarl Implement menus JMenuBar

Table 1. The classes present in the GUI.

39

4 IMPLEMENTATION

JPanel

JFrame

Editor Frame

Drawer jPanel1 jPanel2

M ousel istener

JToolBar

\ 4
MouseM otionListener

FileToolBar

Figure 17. A Class Diagram of the classes used in the Graphical User Interface.
The class EditorFrame, provides the frame for the user interface, this class extends
the swing class JFrame. The other components of the user interface are all part of
the EditorFrame. The classes Drawer, jPanell and jPanel2 al extend the Swing
class, JPanel. These classes implement areas of the user interface. Drawer is
responsible for the design area, for this reason it implements MouseListener and
MouseMotionListener interfaces, to enable the design area to respond to mouse
actions, JPanell implements the edit toolbar, which contains buttons to select
editing features. JPanel2 is located at towards the top of the user interface and
contains the FileToolBar. The FileToolBar extends the Swing class JToolBar. The
JsplitPane and JscrollPane classes used in the user interface are not displayed in this
figure. The JsplitPane, has a JscrollPane on either side, the scrollPane on the left
contains the design area, while the right scroll Pane contains the EditTable.

4.2.2 Interaction of Petri Net Classes with User Interface

The previous section described the basic design of the user interface, these
features had to be combined with the Petri net classes to produce a

functioning editor.

40

4 IMPLEMENTATION

Editing classes were introduced in Design (see chapter 3); these classes
provide implementation to perform editing functions upon Petri nets, with
each class encapsulating a different feature. All these classes inherit the same
base class, (called EditClass in Design, see figure 10). When implementing
these classes it was decided that the base class they extend should be
Pet ri Conponent, the class that all Petri net component classes extend.
This was done because most of the classes require data members present in
the Pet ri Conponent class, such as positi on, and the editing classes
have to interact with the Dr awer instance (the design area), as do the Petri
net component classes. This implementation simplifies the implementation
of the Drawer class and the addition of new editing features as described
below.

The Dr awer class, which provides the design area, also stores all the data
concerning the Petri net that it displays. Instances of the Vect or class are

used to store the places, transitions, subnets and arcs of the Petri net.

All design actions (i.e. Petri net component classes and editing classes) such
as adding transitions or editing components are performed within the Dr awer
design area, of the user interface. At al times one of the design actions
(buttons on the edit toolbar) is selected, and an instance of the respective
class is assigned to a Petri Conponent reference in Drawer, called
sel ect edShape. For example, if Ar c is selected then an instance of arc is

assigned to sel ect edShape.

Dr awer implements both MouseLi st ener and MouseMbt i onLi st ener
interfaces (java.awt.event) to identify mouse actions. nousePr essed(),
mouseDr agged() and nouseRel eased() functions are called to act upon
the mouse being pressed, dragged and released respectively (as their names
might suggest). Each of these functions call a different Pet ri Conponent
function for the selected shape; nousePressed() calls startPos(),
nmouseDr agged() calls setPosition() and nouseRel eased() cdls
fini shDraw(). The classes extending Pet ri Conponent implement these

functions to provide the correct editing capabilities. Figure 18 demonstrates

41

4 IMPLEMENTATION

the mousePr essed() function from the Dr awer classand thest art Pos()

function from the Ar ¢ class.

This modular design simplifies the Dr awer implementation, by requiring
each of the Pet ri Conponent inheriting classes to implement functions to
deal with mouse actions. This means that Dr awer calls the same functions
independent of whether a Petri net component class such as Ar ¢ is selected or
an editing class such as Edi t Ar cs is selected as demonstrated in figure 18.
This simplifies future extensions to the editing capabilities as new features
can be added by implementing a new class extending Pet ri Conponent ,
without requiring modification of the Dr aner class.

42

4 IMPLEMENTATION

a)
public void nmousePressed(MuseEvent e) ({
e. consume();
startPos.x = e.get X();
startPos.y = e.getY();
t heFr ane. st at usBar . set Text ("Mwuse Pressed at (" + startPos.x +
+ startPos.y + ")");
I
sel ect edShape. start Pos(startPos, this);

b)

public void startPos(Coordi nates startPos, Drawer d){

/1 check if starts on a transition or a place
int num= d.transitions.size();
for (int i=0; i < num i++) {

Transition tenp = (Transition)d.transitions.elenentAt(i);

if (tenp.isOn(startPos)) {
//set the arc so that it originates fromthe centre of the
position.x = tenp.position.x + (tenp.size. w2);
position.y = tenp.position.y + (tenp.size.h/2);
arcTran = tenp;
drawi ngPosi tion();
return;

}

}

num = d. pl aces. si ze();
for (int i=0; i < num i++) {

Pl ace tenp = (Pl ace)d. pl aces. el ement At (i);
if (tenp.isOn(startPos)) {
position.x = tenp.position.x + (tenp.size. w 2);
position.y = tenp.position.y + (tenp.size.h/2);
arcPl ace = tenp;
dr awi ngPosi tion();
return;
}
drawi ngPosi tion();

}

fini shPos. x
finishPos.y

position.x =start Pos. X;
position.y =startPos.y;

Figure 18. Sample of mousePressed() function the Drawer class and startPos()
fromthe Arc class. a) mousePressed() is called when the mouse is pressed within
the Drawer (design area). It calls startPos() for the selected PetriComponent,
selectedShape. b) This sample of code from StartPos() in the Arc class, checks if
the arc begins on aplace or transition and sets variables appropriately.

43

4 IMPLEMENTATION

4.3 Hierarchical Petri Net Implementation

Once abasic editor had been implemented, support for hierarchical Petri nets
needed to be implemented. The main features that had to be addressed were
the selection and identification of interaction points, the ability to add subnets
to a Petri net and most importantly the mechanism to move between different
levels of a Petri net effectively.

4.3.1 Interaction Points

Selecting interaction points was one of the simpler tasks. A Boolean
variable, i nt eracti onPoi nt , was added to the Sol i dPet ri Conponent
class (figure 16). This variable is set true when a place or transition is an

interaction point and false otherwise.

A class I nteracti onPoi nt was implemented to provide the ability to
select and desdlect interaction points. This class extends Pet ri Conponent
like the other editing classes. The st art Pos() function was implemented to
identify if the mouse is pressed over a place or trangition and if so its
i nteractionPoi nt statusistoggled (i.e. set false if was already true, and

set trueif it was previoudly false).

To distinguish interaction points from other transitions and places, the
pai nt Conponent () functions of transitions and places were modified, such
that interaction points are filled green.

Interaction points are displayed on the outside of subnets (figurel9), they also
have a location insde the subnet. To store both of these positions a second
position called subnet Posi ti on, was added to the
Sol i dPet ri Conponent class. subnet Posi ti on storesthe position of the

interaction point on the outside of the subnet.

4 IMPLEMENTATION

A reference to asubnet, t heSubnet was added to Sol i dPet ri Conponent ,
it refers to the subnet the component belongs to, if any. Components need to
know which subnet they belong to for displaying their full name when
interaction points are viewed (see figure 19) and when writing to file in save
operations. A Boolean variable, i nSubnet , is used to identify if a subnet is
the Petri net currently displayed in the design area or if it is present as a
subnet. This variable is used to ensure that only the correct components are
painted, for example, only interaction points are painted when the net is
displayed as a subnet, but all components are displayed when viewed as the
main Petri net. (figure 19).

subhetlp3 subhetlp?

{153 18
i m—";@mm

i 1011

tota_ _ 3 netlp0
15

5]

mi

5_
a

E=

A B

Figure 19. A simple Petri net demonstrating the positions of interaction points.

A) The representation of a subnet in a hierarchical Petri net. The interaction points
of the subnet are shown on the outside of the subnet. They display their full name,
which is the name of the subnet concatenated with their own name (e.g. place p3 is
|abelled subnetOp3).

B) The Petri net that the subnet represents, in this example, the reader writers net
from Figure 2 has been used. Eight of the places and transitions have been set as
interaction points. All the places and transitions, not just the interaction points are
visible as demonstrated by transition tO, which is displayed in the B but not in A.

45

4 IMPLEMENTATION

4.3.2 Addition of Subnets
The class Subnet encapsulates the ability to add subnets to a Petri net and to

store and manipulate the contents of a subnet. Subnet was implemented to
inherit Sol i dPet ri Conponent , because like places and transitions, subnets
can be added to Petri nets. They can also be selected for editing and have
their podtion altered, and implementation to do this is provided in
Sol i dPet ri Conponent . The Subnet class contains Vect or s to store its
places, transitions, subnets and arcs.

To provide a choice of how a subnet is added the f i ni shDraw() function
of the Subnet class, displays a JOpti onDi al og prompting the user to
either select a blank subnet or afile to use for the subnet. If afileis chosen,
an instance of Xm Fi | eReader (see4.6) is created to parsethefile.

Subnets need to display their interaction points, so the higher level Petri net
can identify them. When a subnet is added, interaction points are identified
as a subnet file is parsed and the Subnet function
set I nteractionPositions() iscalled. Thisfunction sets an interaction
point’s position on the outside of the subnet to one of eight preset positions.
The eight interaction points on the subnet in figure 19A demonstrate these

positions.

4.3.3 Switching between levels of the subnet

Implementation was required to enable moving up and down hierarchical
Petri nets, to display and edit different levels of the Petri net. Importantly the
hierarchical structure must be maintained while navigating a hierarchical
Petri net. To ensure this the implementation providing movement between
levels of a hierarchical Petri net, leaves the hierarchical structure asit is and
just copies the relevant subnet that is to be displayed to the instance of
Drawer (i.e. to the design ared). Two vectors current Level and
hi gher Net s, were added to Dr awer class, they both store references to

subnets. They are required to ensure the hierarchical structure is maintained

46

4 IMPLEMENTATION

and any editing is both displayed on the design area and added to the correct
subnet.

The Edit Subnet class was implemented to manage moving down a
hierarchical Petri net. It extends Pet ri Conponent like the other editing
classes. When the mouse is clicked it identifies if it was clicked on one of
the displayed subnets, if so that subnet is selected and loaded (figure 20
includes a sample of the | oadSubnet () function). When a subnet is |oaded
a reference to the selected subnet is added to the end of the cur r ent Level

vector. This ensures that once the subnet is loaded, the last element of this
vector will refer to the subnet that is being displayed. This reference is used
to ensure that any changes made at this level are carried out on this subnet. A
reference to the level that is being left is added to the hi gher Net s vector.
The hi gher Net s vector identifies the levels that were displayed before the
current level on display. This vector can then be used when the navigating
back up the hierarchy (see below). The contents of the selected subnet are
then copied to the Dr awer vectors so it can be displayed. While thisis done,
the i nSubnet variables of the places and transitions are set to false, because
the components are no longer being displayed as if they are inside a subnet.
The positions of interaction points also have to be set to ensure they are

displayed at the correct locations.

A Jbut t on called the backBut t on was added to the user interface to move
back up the hierarchy. A separate class like Edi t Subnet was not required
to implement moving back up the hierarchy because the path followed down
the hierarchy is reversed and there is no choice as to which level to return to.
To move up asingle level, the contents of the net being displayed have their
variablei nSubnet set to true, the last element of the hi gher Net s vector is
removed and its contents copied to the instance of Dr awer , the last element
of currentLevel is aso removed. Figure 21 displays a sample of the
function that performs this.

47

4 IMPLEMENTATION

public void | oadSubnet (Subnet sel Subnet, Drawer d){
Subnet tenpSubnet = new Subnet();
d. checkLevel (fal se);
t enpSubnet . copyToSubnet (d);
d. hi gher Net s. addEl enent (t enpSubnet) ;
d. cl ear Canvas();
sel Subnet . copyToDr awer (d, fal se);

}

Figure 20. loadSubne()t function from the EditSubnet class. This function is called
when a subnet has been selected to load, the contents of the selected subnet are
copied to the drawer so as to display them and the previous level is added to the
higherNets vector.

voi d jButton9_actionPerforned(ActionEvent e) {
//This button noves back a |evel;
i f (drawArea. higherNets.size() != 0){
Subnet tenpSubnet = (Subnet)drawArea. hi gherNets. | astEl emrent ();
//Switch elements currently on drawer to be inSubnet
int num= drawArea.transitions.size();
for (int i =0; i < num i++){
Transition tempTran =
(Transition)drawArea.transitions.elementAt(i);
tenpTran. i nSubnet = true;
if (tenpTran.netPosition != null)
tenpTran. switchPosition();

}
num = dr awAr ea. pl aces. si ze();
for (int i =0; i< num i++){

Pl ace tenpPl ace = (Pl ace)drawArea. pl aces. el enent At (i);
tenpPl ace. i nSubnet = true;
if (tenpPl ace.netPosition !'= null)
tenpPl ace. swi tchPosition();
}

t enpSubnet . copyToDr awer (dr awAr ea, true);
dr awAr ea. hi gher Net s. renove(tenpSubnet);
dr awAr ea. checkLevel (true);

repaint();

dr awAr ea. current Level . renove(drawAr ea. current Level . | ast El enent ());

}

el se return;

}

Figure2l. actionPerformed() function to move to a higher Level. A jButton is used
to move back up the hierarchy. When pressed it sets the inSubnet variable of the
components of the displayed net to true and copies the higher level subnet to the
Drawer (Thisisthe last element of the higherNets Vector).

48

4 IMPLEMENTATION

4.4 Open Architecture

The Reflection API, part of the Java programming language, enables
executing programs to dynamically load classes. The capabilities of

Reflection were exploited in the implementation of the open architecture.

An interface was implemented that modules to be dynamically loaded must
follow. It is shown in figure 22. The Modul e interface follows the design
described in Design (chapter 3). It contains two functions, r unModul e()
which executes the module's analysis functions and get Modul eNane(),
which returns the module’'s name. The third element of the interface is the
string, i nput Fi | eNane, a constant, which is initialised to “current.xml” the

file modules parse to obtain the Petri net that they are to analyse.

public abstract interface Mdule {
public abstract void runhdul e();
public abstract String getMdul eNane();
static final String inputFileNanme = "current.xm";

Figure 22. The module interface. Anaysis module to be dynamically loaded must
implement the module interface. RunModule() is caled to execute the analysis
functions, getModuleName() returns the name of the analysis module and
inputFileName is set to the file name that modules parse to obtain the structure of
the Petri net.

To load a module, the load module menu item (figure 23) from the module
menu must be selected. A File Chooser enables selection of the class to be
dynamically loaded. The name of this class is then passed to the
creat eObj ect () function, a function of Edi t or Fr anme(figure 24), which
creates and returns an instance of the class. This object is then assigned to a
data member of Edit or Frame. Upon loading a module, menu items are

49

4 IMPLEMENTATION

added to the module menu to run and remove the module, as shown in figure
23.

M Edit Help load Module
load Module run lrvariant analysis

rermove Invariant analysis

=

iy

A B

Figure 23. The module menu.
A) The module menu without any modules |oaded. Load moduleis selected to
load an analysis module.
B) The module menu with the Invariant analysis module loaded. A menu item
to run the invariant analysis module and another to remove it are added to
the module menu.

static Object createObject(String classNane) ({

oj ect object = null;

try {

Class classDefinition = Cd ass. forNane(cl assNang) ;
obj ect = classDefinition.new nstance();

} catch (InstantiationException e) {
Systemout.println("Error |oading Mdule");
Systemout.println(e);

} catch (Il egal AccessException e) {

Systemout. println("d ass Coul dnot be accessed");
Systemout.println(e);
} catch (C assNot FoundException e) {
Systemout. println(e);
Systemout.println("d ass could not be found");

return object;

}

Figure 24. Use of Reflection to dynamically load classes. The createObject()
function is passed a string containing the name of the class to dynamically load and
returns an instance of this class. This function is adapted from the Java Tutorial
www.java.sun.com/tutorial.

To run amodule and to obtain the name of a module, the respective functions

in the module class first have to be identified and then invoked. Figure 25

50

4 IMPLEMENTATION

demonstrates the Dr awer class function r unAMbdul e(), whichiscalled to
execute a module’'s analysis features. Before analysis is performed the
current Petri net is saved to a file called current.xml (the file that modules
load Petri nets from). The r unMbdul e() method of the analysis class is
then obtained using the get Met hod() function (from the Reflection library),
which returns the method to a Method variable (called r unMbdul eMet hod
in Figure 25). The method can now be invoked using
r unModul eMet hod. i nvoke(nodul e, ar gument s), which is passed the
ingtance of the class upon which the method is to act and an array of
arguments, which in this case is empty. This results in calling the
runModul e() function, which should perform the analysis. To obtain the
module name, a dSmilar function is used to invoke the module's
get Modul eNanme() method.

private void runAvodul e(){

//save the Petri net to current.xnl
saveFile("current.xm");

Class[] paraneterTypes = new C ass[] {};
Met hod runModul eMet hod;
oj ect[] argunents = new Ooject[] {};
Cl ass nodul e ass = nodul e. get d ass();
try {
runModul eMet hod = nodul ed ass. get Met hod(" r unhbdul e,
par anet er Types)

runModul eMet hod. i nvoke(nodul e, argunents);

} catch (NoSuchMet hodException t) {

/1 Systemout.println(t);

Systemout.println("Error |oading nodule!");
} catch (111l egal AccessException t) {

/1 Systemout.println(t);

Systemout.println("Error invoking nethod!");
} catch (InvocationTarget Exception t) {

Systemout.println(t);

t.printStackTrace();

Figure 25. runAModule() function from EditorFrame. runAModule(), initially
saves the file to Petri net to the file current.xml. It then obtains the runMethod()
Method from the desired module class and subsequently invokes it to perform the
anadysis. This function was adapted from functions in the Java Tutorial
WWW.java.sun.com.

51

4 IMPLEMENTATION

When a module is removed, the menu items are removed from the module
menu and the reference to the module instance in Edi t or Fr anme is reset to

null, removing al references to the module.

4.5 Invariant Analysis Module

The class structure of the Invariant analysis module is simple compared to the
editor itsdf. The module consists of three classes, Anal ysi s,
I nvari ant XMLFi | eReader and | nvari ant D al og. Anal ysi s
implements the Modul e interface (figure 22) and implements the Invariant
analysis algorithm. I nvari ant XMLFi | eReader parses current.xml
initialising the data fields of an instance of Anal ysi s.

When the Anal ysi s method r unModul e() method is called, an instance of
I nvari ant XMLFi | eReader, is created, the file is parsed and the algorithm
executed. The agorithm determined by D’Anna & Trigila (D’Anna &
Trigila 1988) for finding invariants was implemented. An outline of the

algorithm is reproduced below.

4.5.1 Invariant Analysis Algorithm
The same algorithm is used to calculate both P and T invariants. The

incidence matrix C is the input for the algorithm. C is used for calculating T

invariants, while the transpose of C isused for the calculation of P invariants.

52

4 IMPLEMENTATION

The algorithm:

Initialisation
* TheIncidence matrix C hasdimensions m x n, the number of places
and transitions respectively.
e Anidentity matrix, B, of dimensionsn x nis constructed
* Theextended matrix isformed by combining C and B, by writing C
above B. The resulting extended matrix has m+n rowsand n

columns.

Phase 1 - removes non-zero d ements from C
 Whilethere are non zero e ementsin C do

o If thereisarow hin C such that either sets, P+ and P- are the
empty set. Where P+ is all the positive elements in row h and
P- isal the negative elementsin row h) then
= Delete from the extended matrix all columns where
row h has anon zero column.
o Else (if thereisarow hin C with |P|=1or [P|=1then
= Set k equal to the unique index of the column
belonging to P+ (algorithm reversed if |P | =1)
= For(j inP-)do
* Subgtitute to the column of index j the linear
combination of the columns indexed by k and |
with the coefficients |C(hj)] and (C(hk)|
respectively.
= Delete the column of index k from the extended
matrix.
o Else
= st h equal to the index of the non-zero row of C, and k
to theindex of the column so C(hk)!=0
= for (j where Jl=k and C(hj)!=0) do
e subgtitute to column with index j the linear
combination of the columns with indicdes k
and j with coefficients a and B such that o and
B are: if (sign(C(hj)) != sign sign(C(hk)) then o
= |C(hj)| and p = |C(hk)| else a = -|C(hy)|, B =
IC(hK)].
» Delete from the extended matrix column with
index k

53

4 IMPLEMENTATION

Phase 2

* While (B hasarrow with index h containing negative elements) do
0 P =negativeelementsinrow h
o P"=postiveelementsinrow h
o If P"isnot empty
* For (j,k)inP"x P do
» Perform alinear combination on columnsj ank
k to obtain a new columns with the h-th
element equal to zero,
* Divide the new column by the greatest
common denominator of its elements
* Append the column to B
o Ddetefrom B al columnswith indexesin P-

* Dédetefrom B al columns having non-minimal support

4.5.2 InvariantDialog
InvariantDialog extends JDialog. It displays the results of the invariant

analysis. Pand T invariants, P invariant equations and information regarding
the liveness and boundedness of the Petri net are displayed in separate text
fields.

4.6 File Format

Filesare written using aFi | eWi t er instance. A functionwri t eToFi | e()

is called for each component of the Petri net to save its detailsto file.

XML file parsing to read files when opening or adding subnets was aided by

the new JAXP1.1 library (www.java.sun.com/xml/) which provides classes to

perform XML parsing. The class Xm Fi | eReader was implemented to
handle parsing, it extends Def aul t Handl er, a class from this library. The
Xm Fi | eReader class creates a SAXParser (a class form the JAXP
library) instance to parse the XML file, and also provides the implementation
to interpret the XML tags identified by the SAXPar ser. Thisis done using

54

4 IMPLEMENTATION

three simple functions, startEl enent(), endEl enent() and
characters(). The SAXPar ser calsstartEl ement () when a start tag
isencountered. st art El ement () identifies what the tag is, any attributes it
may have and provides implementation to act upon this information. A
sample of startEl enent (), is shown in figure 26, it shows that when a

place tag is encountered, anew Pl ace instanceis created and it nameis set.

EndEl enent () is caled when a terminating tag is encountered. Like
start El enent (), endEl ement () identifies what the tag is and functions
are called to process this information. Figure 27, demonstrates this for an
end place tag (</place>). Finally characters() iscalled when there are
parameters between tags. This function is implemented to identify such

parameters and act accordingly.

public void startEl enent(String namespaceURI
String sName
String gName,
Attributes attrs)
t hrows SAXException
{
String eName = sNaneg; /I el ement namne
if ("place".equal s(eNane)){
newConponent = new Pl ace(0);
if (attrs !'= null){
newConponent . nane = attrs. get Val ue(0);
}
}

if(“transition”.equal s(eNane)) {
R
}

Figure 26. startElement() Function in XmiFileReader. When the SAXParser
encounters the start of a tag, startElement() is called, which provides the
implementation to parse the tag. The section of code demonstrates how a
place tag (<place>) is parsed.

55

4 IMPLEMENTATION

public void endEl ement (String namespaceUR!,
String sName, // sinple nane
String gName // qualified nane

)
t hrows SAXExcepti on
String eName = sNane;
i f("place".equal s(eNane)

{
newConponent . addEdi t Poi nts();
i f (subnetFl ag){

i f(((SolidPetri Conponent)newConponent).interactionPoint)

newSubnet . set I nteracti onPosition((SolidPetri Conponent)n
ewConponent) ;

}
((Pl ace) newConponent) . i nSubnet = true;
newConponent . t heSubnet = newSubnet;
newSubnet . pl aces. addEl enent (newConponent) ;
newConponent . t heSubnet = newSubnet;

el se
d. pl aces. add(newConponent) ;

Figure 27. endElement() function in XmlFileReader. When the SAXParser
encounters an end element the endElement() function in the DefaultHandler
(XmlFileReader) is called to parse the tag. This section of code demonstrates the
actions taken when an end place tag is reached (</place>).

56

5 RESULTS & CASE STUDIES

5 Results & Case Studies

This Project has designed and implemented a Petri net editor called Predator.
In this chapter a number of case studies are used to investigate the
capabilities of the Predator Petri net editor.

5.1 Basic Editor Features

An initial am of the project was to provide simple Petri net editor functions.
These include, adding arcs, places, transitions and tokens. A simple
Graphical user interface was designed to incorporate these features; it is

shown in figure 28.

[FE3Predatar Petri Mek Editar - * Unkitled
File Modules Edit Help

SEE | 2

5] .
Edit tool b
~J««—Edit toolbar v

Filetool bar /

Design Area Edit Table

BEHEEEEEEE

N
]
j

el £ 2 e [Y

positionBar
statusBar

4 | o

Fogition: (258,10)

Figure 28. The Predator Graphical User Interface. The arrows indicate the
components of the interface.

57

5 RESULTS & CASE STUDIES

The user interface was implemented to provide a large design area, with the
editing options easly accessible in the edit Toolbar and on the edit Table.
All the operations required in designing a Petri net could be done using these

three e ements of the user interface.

The ability of Predator to design Petri nets will be demonstrated by the case
studies in the following sections. Full details for using the Predator Petri net
editor are provided in the user guide (chapter 9).

5.2 Hierarchical Petri Nets

The Predator Petri net editor enables the design of hierarchical Petri nets via
the addition of subnets. Predator allows subnets to be added to any other
Petri net, allowing multiple level Petri nets to be designed. The
implementation requires only single mouse clicks to navigate the various
levels of a hierarchical Petri net. To move down alevel, the editSubnet icon
must be selected, any subnet can then be viewed by clicking on it. To move
up aleve asingle click on the back level icon is required. Predator alows
interaction points to be visibly seen on the outside of the subnet. Thisfeature
enables arcs between levels to easily be specified and observed as shown in

the dining philosophers example below (figure 31).

The dining philosophers is a common computing problem, used to
demonstrate deadlock. The system consists of five philosophers who are
either thinking or eating. There is a fork/chopstick between each of the
philosophers. To eat a philosopher must pick up the two forks directly next
to him. A single level Petri net of this problem is displayed in figure 29.
From this it is evident that each of the philosophers has the same structure
enabling them to be represented by a single Petri net (figure 30). This Petri
net can then be added to the system as a subnet for each of the philosophers
(figure 31). Comparison of the single level net and the hierarchical net

58

5 RESULTS & CASE STUDIES

demonstrate the advantages of hierarchical Petri net design. The display of
hierarchical net is simpler and much clearer. It is easier to understand what
the Petri net is modelling.

Eszredatur Petri Net Editor - D:\Docul g 5'

File nodules Edit Help

= e =

=l co..

Sett.

olojooooooo

Lol Ll Ao m]=]

N
il
ol
EI

-
| | »

DADocuments and SettingsiMark Wassldininglevel3 xml has been Saved Puasition: (266,6)

Figure 29. A single level dining Philosophers Petri net. This Petri net models the
dining philosophers problem as a single level. Places p20, p21, p22, p23 and p24,
represent the chopsticks. The rectangular looking parts of the net are philosophers;
each has four places and four transitions. For example, pO represents the first
philosopher thinking, tO, picking up the chopstick to the right of the philosopher. p1
represents the state when this chopstick has been picked up. t1 models the action of
picking up the second chopstick, this time form the left. This leads to place p2,
modelling the philosopher eating. The subsequent places and transition, t2, p3 and
t3 model releasing the chopsticks returning the philosopher to the thinking state.

59

5 RESULTS & CASE STUDIES

Thinking
pa t0

Eating
11 pz

@)

p3

Figure 30. A Petri net representing a single Dining Philosopher.

f=3Predator Petri Net Editor - * D:,Documents ani
File Modules Edit Help

3
Ix

FERENE

|v
[o}
7]

=
=l
HE=IE

subnet!td subnetitl

[O][= | =/
FF
]

Mlmma-v

i

subnetatl subnet2td

D‘D‘Dlo

'
]
subret2ts : subnaf2t2

subnetdtd subnetdt! subnet3tl subpetat

Kl
a
._.I
_
-9
o
N
il
ol
o

1 j
Ubretdz | subnetsts Subrelatz | subetsiz

al l .l_vl

Figure 31. Hierarchical Dining Philosophers. This Petri net presents a hierarchical
design of the dining philosophers problem. Each of the philosophers is represented
by a subnet, with four interaction point transitions. Transition tO of each philosopher
picks up the chopstick to the right. t1 picks up the chopstick to the left of the
philosopher, while t2 and t3 replace the chopsticks to the right and left of the
philosopher respectively. Each of the chopsticks is represented by a place. A token
on these places represents that the chopstick is available.

This figure demonstrates how Predator represents subnets and their interaction
points. Each subnet is a dashed rectangle, with its interaction points placed on the
outside of the subnet. The interaction points are distinguished from the components
of the higher level net by the thick line connecting them to the subnet. All
interaction points are painted green to distinguish them from the other components
of a Petri net.

60

5 RESULTS & CASE STUDIES

5.3 Open Architecture

The aim of the open architecture was to enable the Petri net editor to
dynamically load classes, create instances of them and invoke their methods.
The initial step in demonstrating the function of the open architecture was to
attempt to load a t est Mbdul e class. This class implemented the Modul e
interface, ther unMbdul e() function was kept simple; it only output a string
to the standard output. This class was successfully loaded and executed
demonstrating that the open architecture functions correctly. The invariant
analysis module was also successfully loaded by the editor and executed on a
number of sample Petri nets (A full description of the invariant analysis

module follows in the next section).

The open architecture was further tested because another module
implementing the Mbdul e interface has been implemented independently of
this project (Dingle 2001). This module interacts with a pre-existing,
Markov chain Petri net performance analysis program Dnamaca (Knottenbelt,
1996). To demonstrate the open architecture this module was dynamically

loaded and run on asimple Petri net, as shown in figure 32.

5.4 Invariant Analysis Module

Invariant analysis is a well-supported analysis technique present in some
Petri net editors. Thusthe invariants for common examples of Petri nets such
as the readers-writers problem and the producer-consumer problem are well
known. This provides examples with which to test the invariant analysis

implementation.

61

5 RESULTS & CASE STUDIES

[, Paedabon Petii Hot Edter - * Untitied

% Reaullz

File Bodules Elit Halp rfoimanon [MRACGI0AY wWiitng e datana INFT.
ad ySaneAn dpser (0S5 07A) powandd down

B Cde i

. imer (OxEOdEd 28] reading drwr (-1.55312e-17 seconds)
]
— inking perfor manoa mnadyser
l a o ~0iyser g -Lhomes inid 200 idnamacaiingliz -coerf -leerf -bvmiz ~m -Indorr
— "‘_..—\.L um code &G
o [w =L Tmeer 004823] reading dmer (0008 seeords)
— e T —_ Y
\ '__ I-:lng peifoimante arakser
—_— I ‘:-m'
]) eriormarcedrabser (InB05 6EET]: powernpup.
—_— [inar (CE0S EEDED timer stmemed
j & { Irfcimation (0230553400 reading dats from 'OPTIONS.
= T nformation [MedCS83da) reading state dam from YNRDY
- D i erformancetraser (OeB05 GEET]: powered up
— Iano npue (CeE0S BEEC Trom 'STEADY
\\ r redsion pat o 10 plyces]
— n?___/
-0 ' % mpin parfomance remk)
i} [orate Maxre 3l iokens’
Y mean 2 oo
'\ LTt [l oani TR
S distribution
— PR T i
=
= warred o roaTi B O i)
ol Performancatrabsar (00R05 6EBOL: prwered down
== G i 0
LE%} Irmar (CE04RI2A) reading fmer (001 secends]
Ef} mompikel pereraie func sheady comollez perf TOTAL
- Ia 031 -6 BETEde-16 001 -155313e-17 Q408 Qdl e
I done
S Exit
i DNE |
Matiule Lasded Onsmacaodulezolass Pisalfiom: {45707

Figure 32. The Markov Chain Performance Analysis module loaded into the
Predator Petri net Editor and run on a simple Petri net. This screenshot
demonstrates the Markov chain analysis module run on the Predator Petri net editor.
This screenshot of the Petri net editor may look different from other because it was
run under Linux, as the Markov chain analysis module required this. All other
screenshots are taken from Windows execution of Predator

The invariant analysis module was initially tested with the simple Petri net
snown in figure 33,A. It correctly identified the P and T invariants of the net
as shown in table2. The addition of places, transitions and arcs to this Petri
net provided another ssimple test. Figure 33, parts b-e, display how the Petri
net was modified and table 2 presents the results obtained from invariant

analysis on them.

62

5 RESULTS & CASE STUDIES

12 pa 10 t2 pl 10

Poa "o R&;f
t|3:|
pz t B n2 1l n
[
LA LF
A B

=
=}
=
—
=)
=
=
=

12

2

.
= &)
- ¢

pd

Qﬁ
=

C D
t2 pa 10
‘ * ‘0
n2 1 I
N
", LK
13
E

Figure 33. Smple Petri nets used for Invariant Analysis. Each of the Petri nets
labelled A to E were used to test the invariant analysis module. The expected
invariants and results are displayed in Table 2.

The readers-writers problem was also used to test the invariant analysis
module. A Petri net for the readers-writers problem was introduced in
chapter 2. For this Petri net there are three P invariants, described in
Background (2.1.3.2) and shown in table 2. The results obtained from the

63

5 RESULTS & CASE STUDIES

invariant analysis module are shown in figure 34, they match the expected
results. Figure 35 provides a clearer illustration of the dialog used by the

invariant analysis module to display its results.

bl + p2Z + 15pd = 15 Therefore the net is bounded
p3 +pd =15
net iz covered by T inwariants

a Eg_'slnvariant Analysi

I Invariant Analysis Results far the current Petri Net
0 P Invariants T Invariants
\ p0,pl 0, el

rl,p2,15p4 £Z,t3

ll p3,p4
a
'z
9

= P Invariant Equatia... Boundedness and Liveness
)

Y p0 + pl = 15 net is covered by P invariants
i
A

\

'y

\
oIl

o

15

28]

fa]

Figure 34. The output from the invariant analysis module for the Readers Writers
Problem. The information is output on four text fields. The P and T invariants are
displayed in the top text fields. The bottom left displays the P invariant equations
and the bottom right displays data on the boundedness and liveness of the system.

Egalnvariant Analysis Module =

Invariant Analysis Results for the current Petri Met

F Invariants T Invariants

pd,pl td,tl

pl,p2,15pd 2,3

p3,pd

F Invariant Equatia... Boundedness and Liveness

p0 + pl = 15 net is covered by P invariants
pl + p2 + 15pd = 15 Therefore the net is bounded

p3 + pd = 15
net is covered by T inwvariants

[

Figure 35. The InvariantDialog displaying the invariant analysis module results.
This dialog displays the same results for the readers-writers problem asin figure 34.

64

5 RESULTS & CASE STUDIES

Petri net Known Invariants Resultsfrom Analysis
module

Simple Net (Fig 33. A) pO+pl+p2=5 pO+pl+p2=>5
t0,11,t2 10,11,12

Simple Net (Fig 33, B) pO+pl+p2 =5 p0 + pl+ p2 =5
t0,t1,t2 t0,t1,t2
t3 t3

Simple Net (Fig 33, C) pO+pl+p2 =5 pO+pl+p2 =5
p3 =0 p3 =0
t0,t1,t2 t0,t1,t2
t3 t3

Simple Net (Fig 33, D) pO+pl+p2 =5 pO+pl+p2 =5
p4 =0 p4 =0
t0,t1,t2 t0,t1,t2

Simple Net (Fig 33, E) pO+pl+p2 =5 pO+pl+p2 =5
p3 +P4 =0 p3 +P4 =0

Readers Writers(Fig34) | pO+pl=15 p0+pl=15
pl+p2+15p4 =15 pl+p2+15p4 =15
p3+p4=15 p3+p4=15
t0,t1 t0,t1
t2,t3 t2,t3

Producer Consumer (fig | p0+pl=1 pO+pl=1

36) p2 +p3=16 p2+p3=16
p4+p5=1 p4+p5=1
t0,t1,t2,t3,t4 t0,t1,t2,t3,t4

Table 2. P and T invariants of the tested Petri nets. This table provides a
comparison between the known invariants (provided from texts or from invariant
anaysis with DaNAMICs Petri net editor) with those obtained from the Invariant
analysis module implemented.

The invariant analysis module was further tested using the Producer
consumer problem. Figure 36 displays the expected invariants for the
Produce consumer problems (as described in figure 36) and the results

obtained from the invariant analysis module.

The invariant analysis module has been tested on a limited number of Petri
nets, all of which suggest that the implementation correctly identifies both P

65

5 RESULTS & CASE STUDIES

and T invariants. However further testing on more complex Petri nets is
needed.

E‘%Predator Petri Net Editor - * Untitled 10l =|
File Modules Edit Help

0 | 1| Compon...| Setting

Mame n2

|| 0.0
Ol Mo, Toke... |0
u PO p4 13 0
0
\| H.(’> G u 0
Rl D
0
0
0
0

._.l
]
el
-

o

=
4 | »

Module Loaded Analysis.class Fosition: (573,538)

Figure 36. The Producer Consumer Problem. The left side of this Petri net
represents the producer while the right models the consumer. The two components
are connected via a buffer that in this case allows up to sixteen items to be produced
at once. The buffer ensures that if there a no items produced the consumer cannot
consume any and if the buffer is full, then the producer can't produce until the
consumer consumes at |east one item.

66

6 CONCLUSION & FUTURE WORK

6 Conclusion & Future Work

The two central aims of this project were to design a Petri net Editor that
supported hierarchical Petri nets and provided an open architecture to
facilitate the dynamic loading of Petri net analysis modules. These aims
were met as discussed in the second (6.2) and third (6.3) sections of this
chapter. The basic infrastructure required to support these two features was
also implemented as discussed in the next section.

6.1 General Features

Predator, the Petri net editor implemented provides the basic features for
designing Petri nets that are available in most editors (described in chapter 2).
The various examples provided in the results (see chapter five) illustrate the
ability to design Petri nets with the Predator Petri net editor.

Support for hierarchical Petri nets and an open architecture were placed
ahead of additional editing features such as zooming and printing. Obviously
additional features such as these will improve the ability to design nets with
the editor but it would not be difficult to add them in the future.

6.2 Hierarchical Petri Nets

The support for Hierarchical Petri nets provided by other Petri net editorsis
very basic and difficult to navigate the various levels of the Petri net
(discussed in chapter 2). This project set out to provide improved support for
hierarchical Petri nets, which was to be achieved primarily by making
interaction points between different levels of a hierarchical Petri net explicit

and by providing a ssimple way to navigate between the many levels of a

67

6 CONCLUSION & FUTURE WORK

hierarchical Petri net. The Predator Petri net editor has provided improved
support for hierarchical Petri nets, interaction points can easily be
selected/deselected, and are also visible on the outside of subnets. The
implementation also enables single mouse clicks to enable moving between

different levels of a hierarchical Petri net.

The dining philosophers example (results, chapter 5) demonstrates the
advantage of designing complex systems using a compositional approach,
especialy if the system contains repetitive units, like the philosophersin this

example.

Predator currently limits the number of interaction points a subnet may have
to eight. This was done to smplify the positioning of interaction points on the
outside of subnets but could be a limitation in the design of complex systems.
An implementation providing unlimited interaction points could be added in

the future.

This project has only explored the ability to design, edit and store
hierarchical Petri nets. This has demonstrated advantages in the design of
complex systems but much greater benefits could come from the use of
compositional approaches to testing and analysis of Petri nets. Process
algebras exploit their compositional nature in analysis techniques. It may be
possible to adopt them for hierarchical Petri net analysis. This provides an
area of future research. The predator Petri net editor could be a useful utility
for such research as it provides support to design hierarchical Petri nets and
the open architecture allows the dynamic loading of user defined analysis

modul es.

6.3 Open Architecture

The aim of incorporating an open architecture into the design of the Petri net
editor was to provide users the power to implement, load and use analysis
techniques to suit their needs. All existing Petri net tools rely upon built in

68

6 CONCLUSION & FUTURE WORK

analysis techniques, which limit the user to use only those provided with a
particular editor or to use multiple editors to provide al the analysis
capabilities they require.

The open architecture implemented using Java Reflection, fulfils it aims.
This has been demonstrated by the ability to dynamically load and execute
two different analysis modules, both offering different types of analysis
techniques. One of these modules was implemented separately from this
project (Dingle 2001). This module demonstrates that users will be able to
implement their own modules. Further as this module modifies a pre existing
analysis program Dnamaca, it demonstrates that new implementations are not
required but only modification to enable existing programs to parse the file

format and implement the Module interface.

6.4 Invariant Analysis Module

In the results (chapter 5), the invariant module was demonstrated to function
correctly for a limited number of Petri nets. It is not possible to verify that
the implementation will correctly analyse every Petri net, but the ssimple tests,
suggest that the module does perform invariant analysis correctly. The
implementation of this module was an important feature of demonstrating the

capabilities of the open architecture as discussed above.

6.5 File Format

The file format developed is based upon the Petri Net Markup Language
(Jangd et a., 2000). Thefile format has been modified to support Stochastic
and Generalised Stochastic Petri nets, and further to support hierarchical Petri
nets. Two different file formats were used to provide hierarchical Petri net

support; a flattened form saving a hierarchical net as a single file and the

69

6 CONCLUSION & FUTURE WORK

other saving each net as a separate file. The flattened structure was added to
provide the complete structure of a hierarchical Petri net in a single file, so
that editors or analysis modules that do not support hierarchical Petri nets can

parse ahierarchical Petri net asif it consisted of single level.

6.6 Concluding Remarks

The Predator Petri net editor has met the aims of this project. The open
architecture is a powerful feature of Predator enabling users to perform
whatever type of Petri net analysis they wish to. There is also much that can
now be explored in the field of Hierarchical Petri nets, whose structure could
be exploited in system design and anaysis.

70

7 BIBLIOGRAPHY

7 Bibliography

7.1 Book & Journal References

Ajmone-Marsan, M., Conte, G. & Balbo, G. (1984) A Class of Generalised
Sochastic PetriNets for the Performance Eval uation of
Multiprocessor Systems. ACM Transactions on Computer Systems,
2:93-122.

Bause, F. & Kritzinger, P.S. (1995) Sochastic Petri nets— An Introduction to
the Theory.

Ciardo G. & Trivedi, K.S. (1993) A decomposition approach for stochastic
reward net models. Performance Evaluation 18:37-59.

D’Anna, M. & Trigila, S. (1988) Concurrent System Analysis Using Petri
nets: An Optimised Algorithmfor Finding Net Invariants. Computer
Communications, 11, 215—220.

Deitel & Deitel (2001) Java How To Program. 3@ Edition Prentice Hall.

Dingle (2001) The production of the extensible Petri net Editor/Animator —
“Medusa” . Master Thesis, Imperial College.

Sundsted, T. (1996) Examining HotSpot, an object-oriented drawing
program. Java World , December 1996
Meeting on XML/SGML based Interchange Formats for Petri nets (2000).

Hillston., J. (1996) A Compositional Approach to Performance Modelling.
Cambridge University Press.

Jingel, M., Kindler, E. & Weber, M. (2000) Towards a Generic Interchnage
Format for Petri nets— Position Paper. http://www.informatik.hu-
berlin.de/top/pnml/

Magee, J. & Kramer, J. (1999) Concurrency StateModels & Java Programs.
Wiley.

Mailund & Mortensen (2000) Separation of Style and Content with XML in
an interchange format for higher level Petri nets.

Molloy, M.K. (1982) Performance analysis using stochastic Petri nets. IEEE

71

7 BIBLIOGRAPHY

Transactions on Computers, 31:913-917.

Knottenbelt,W.J. (1996) Generalised Markovian Analysis of Timed
Transition Systems. Masters Thesis, University of Cape Town.

Valente, A. & Gribaudo, M. (2000)Two level interchange format in XML
for Petri nets and other graph-based formalisms.

Woodside, C.M. & Li., Y. (1991). Performance Petri Net Analysis of
Communication Protocol Software by Delay-Equivalent Aggregation.
Proceedings of the 4th International Workshop on Petri nets and
Performance Models, IEEE Computer Society Press, 64-73.

7.2 URL references

Websites that were particularly useful references are listed below.

Carl Petri’s Homepage -
http://www.informati k.unihamburg.de/TGl/mitarbeiter/prof§/petri_eng.html

Petri net World - http://www.dai mi.au.dk/PetriNets/

The Petri Net Tool Database -
http://www.dai mi.au.dk/PetriNets/tool s/db.html

The Java Tutorial http://www.java.sun.com/tutorial/

WWW.petrinets.org

7.3 Tool References

A number of Petri net Editor tools were tested and some are referenced in the

text. The URL of thesetools homepages are given below.

CPN http://www-src.lip6.fr/logicie Ssmarss CPNAMI/

DaNAMICS http://www.cs.uct.ac.za/Research/ DNA/DaNAMIiICS

72

7 BIBLIOGRAPHY

HPSim http://home.t-online.de’lhome/henryk.a/petrinet/e/lhpsim e.htm

INA http://www.informatik.hu-berlin.de/~starke/ina.html

THORNY/DE http://www.offis.uni-oldenburg.de/projekte/dnsg/project dns.htm

Model checking kit http://wwwbrauer.in.tum.de/gruppen/theorie/KIT/

Visual Object Net++
http://www.systemtechnik.tu-ilmenau.de/~drath/visual E.htm

73

8 APPENDIX

8 Appendix

Source code for the Predator Petri net editor will be available online at
http://mark.wass.com/Petrinets.html .

74

9 USER GUIDE

9 User Guide

This chapter describes how to use Predator Petri Net Editor to design and edit

Petri nets. A number of the examples use the readers-writers problem.

9.1 Getting Started

9.1.1 Loading
Predator is provided in a JAR file called PEditor.jar. To run on command

line on either Windows or Linux type e.g. c:\java—jar PEditor.jar, or use the
batch file provided.

9.1.2 Initial Screen
Figure 9.1 demonstrates Predator’s user interface. From here Petri nets can

be designed, edited and loaded.

Components of the User interface
drawing area - where Petri nets are displayed.
Editor ToolBar — where editing tools are selected.
editTable - used to edit properties of Petri components
FileToolBar - used for file operations, e.g. loading and saving files.
Menu Bar - menusfor opening files, loading modules and help

Statusbar - displays information about operations such asfile
opening and saving

Position Bar - displays the position of the cursor on the screen

75

9 USER GUIDE

[Predator Petri Net Editor - * Untitled =10l %]

File Modules Edit Help

TI LA IC\J%- ;UI 1
Campone...| Sefting
Immediate Tr i
0.0

FileToolBar

|»

Arc
Poly Arc

Token

Menu bar

EditTable |

Remove Token

olooalalalalala

Clear

Remove components
Edit

Edit arcs

Add nodes statusBar

Design Area

Remove nodes

Interaction point
Add subnet
Edit Subnet

PositionBar

| & _'l_vl

Position: {222,3549)
Figure 9.1. The Predator Petri Net Editor Tool User Interface. The EditToolbar
provides editing options. The File Toolbar provides buttons to open and save files.
The editTable displays editable features of selected Petri net Components. The
Design areais the area where Petri nets are displayed. The position of the cursor is
displayed in the position bar. User information is displayed in the status bar.

9.2 Designing A simple Petri Net

To add components to a Petri Net the relevant button on the EditToolBar is
selected and the mouse clicked at the location the component is to be added,
as displayed in Figure 9.2. For example select Transition and add one to the

display.
To add Places, first sdlect the place icon, and like transitions click on the

design area where places are to be added. Figure 9.3 displays the editor with
places added.

76

9 USER GUIDE

Eg’iPredatur Petri Net Editor - * Untitled . =]
File Modules Edit Help

FEEEEET

2l | Compan...| Setting
[|

o Transition button 0

0] 5
selected 0

N 3

N g

_'l ‘DD t g

B g

_

-9

7
o

[Looe;

N
i‘l
el
if
e

=
4« | »

Fosition: (63,1}

Figure9.2. Transitions added to a Petri Net. The Transition icon from the
editTool Bar is selected as shown. The mouse is then clicked on the design area

where transitions are to be added.
[EiPredator Petri Net Editor - * Untitled o] 3

File Modules Edit Help

CisiE®a| (3]

Al | Sompon...| Setting

FEEEBEEEEEE

ol Ll [Ell=]=

~

C
=3
OM

N
i‘l
ol
id
=

=
4 | »

Pasition: (55,13

Figure9.3. Places added to the Design Area.

77

9 USER GUIDE

The position of components can be edited. To do thisfirst select the edit icon
from the editToolBar then click and drag the mouse to cover the components
that are to edited, as shown in the figure 9.4. Once the mouse is released edit
points are drawn at the corners of the selected components, as shown in the
figure 9.5.

Eg’iPredatur Petri Net Editor - * Untitled . =]
File Modules Edit Help
W= E
Al Compon...| Setting
D/U\> t

oloooowoaoal—=
=

Lo 1L -l Alo = 1=

N
il
oll

=
| | »

Mouse dragged to {131,5049)

Figure9.4. Editing. A placeisbeing selected for edit. The edit icon has been
selected and the mouse has been dragged over the place that isto be selected. The
rectangle shows the selected area.

78

9 USER GUIDE

Eg’iPredatur Petri Net Editor - * Untitled . =]
File Modules Edit Help

FEEEEET

2l | Compan...| Setting
Marme pd

Capacity |1
Mo, Toke... |0
na H ¥ Position |55
' Position |433
Height |30
idth 30
Change . |0
Change ...

[P I P P £ 1 5

n4 13

N
i‘l
el

=
4« | »

Fosition: {63,5)

Figure 9.5. Selected Components. The selected components are painted with
editpoints. Place p4 is selected.

9.2.1 Adding Arcs
Arcs connect places and transitions. To add an arc select the arc option and

click on place or transition that the arc is to start at. Then drag the arc to the

place or transition at which it isto finish (see figures 9.6 & 9.7).

79

9 USER GUIDE

Eg’iPredatur Petri Net Editor - * Untitled . =]
File Modules Edit Help

2l | Compan...| Setting
Marme pd

Capacity |1
Mo, Toke... |0
na H ¥ Position |55
' Position |433
Height |30
idth 30
Change . |0
Change ...

o ==

n2

X
L]
Lo
]
-9l
-

p3

N
i‘l
el
if
e

=
4« | »

Fosition: {2563,191)
Figure 9.6. Adding an arc. Then mouse is pressed on the place or transition that it

isto start and dragged over to the place/transition whereiit isto finish.
[E3Predator Petri Net Editor - * Untitled 1Ol x|
File Modules Edit Help

1 |
i S
El pad 1 EE
B i
e

L

. Tl

e

e

) P I

N
i‘l
el
if
e

=
4| | »

Fosition: (84,34)

Figure 9.7. Connecting an Arc to an input Place/transition. The arc was added by
releasing the mouse over the place p1.

80

9.2.2 Tokens

9 USER GUIDE

Tokens can be added to places. To add atokensto places, select token from

the editToolBar. Click on aplace to add atoken, repeat this for the number

that are to be added (see figure 9.8).

E‘%Predator Petri Net Editor - * Untitled
File Modules Edit Help

=10l x|

pd 1
+ ¥

[/ Alo|=l|=

._.l
]
el
-

nd

N
il
ol

4 |

|»
I A B G

B

Fosition: (64,107}

Figure 9.8. Adding Tokensto Places. Four tokens have been added to place pO.
The token icon on the editToolbar is selected, tokens are added by clicking on a

place.

Tokens can similarly be removed by selecting the removeT okens icon from

the editT ool Bar, and clicking on places.

Token number can also be changed when edit is selected from the

editToolBar. The number of tokens on multiple places can be changed at

the same time. First the places must be selected. The token number on the

81

9 USER GUIDE

editTable can then be used to set the number of tokens on all the selected

places, as shown in the figure below (9.9).

&4 Predator Petri Net Editor - * Untitled o |=[3

File Modules Edit Help
Bl=lEEe

0 | 1 | ComponentPropeties| Setting
Mame Pl
il | 0.0
Ol po H 1o, Tokens 5
* ¥
|\ 0
1]
i 0
I— 1]
* 0
10 o 0
- | n
-0
9 "
] :
*
n3
-
*

N
il
ol
u

=
| | »

Fosition: (156,3)

Figure 9.9. Adding Tokens to multiple Places. The edit icon from the editTool Bar
has been selected. The mouse was pressed and dragged to select places, pl,p2 and
p3. The editable (indicated above by large arrow) was used to set the token number
of these placesto 5.

9.3 Subnets

9.3.1 Adding Subnets
To add a subnet sdlect the subnet icon from the edittoolbar. Then click on

the screen to add a subnet. A dialog will appear (see figure9.10) giving the
option to add a subnet from afile, use afile, add a blank subnet or cancel the
addition.

82

9 USER GUIDE

&4 Predator Petri Net Editor - Untitled -0l x|

File Modules Edit Help

WEEEEE
0 | Al Compon...| Setting
B | 0.0
9 :
a
N 0
a
X i
a
o 0
a
Ll x| 0
—| @ ‘What type of Subnet would you like to add?
ol T
== Blank From File | use File | Cancel |
_ Jl

N

N
il
ol

=
4« | »

Mouse Pressed at (227,240)
Figure 9.10. Adding a Subnet. Subnets can be added by selecting the subnet icon
from the editToolBar. The diaog is used to identify how the subnet should be
added. A blank subnet can be added or one from afile. If from file is selected then
when the Petri Net is saved the subnet will be saved to a different file, not the source
file. When usefileis selected, the subnet will be saved back to the sourcefile.

The options from file and use file then present FileChooser dialogs (figure
9.11) to select the file to use for the subnet. The difference in these two
options occurs when the Petri Net is saved. From file, saves the subnet as a
different file, where as use file, saves the subnet using the file selected. Once
selected a subnet is added as shown in figure 9.13.

83

9 USER GUIDE

&4 Predator Petri Net Editor - Untitled -0l x|

File Modules Edit Help

FEEEEET

1] | 21| Compon...| Setting
0 | 0.0
9 0
1]
0
N :
= - 5 = 0
Al | @ o = D
a : i
I WSTASCAN 0
"| 1 WINNT 2
| copyeurrentxml |
currentxml
-Ol currentotSaved xml
= currentSaved xmi >
_ J|
r\ File narme: | Open |
Files of type: IXMLﬂIes LI Cancel |

N
il
ol

=
4« | »

Fosition: {243,283)
Figure9.11. Choosing a subnet.When from file or usefile are selected, afile
chooser dialog is displayed to abtain the name of the file to use for the subnet.

9.3.2 Subnet Interaction Points

Transitions and places of a Petri net can be set as interaction points by
selecting the interaction point icon from the edittoolbar. The interaction
point status of places and transitions can then be toggled by clicking on them.

Interaction points are filled green to distinguish them.
A subnets interaction points are displayed on the outside of the subnet. This

enables arcs from the current level of the Petri net to be connected to the

interaction points and thus interact with the subnet.

84

9 USER GUIDE

subnetdp3 subnempz

0
i m p1
J}'
etop4 mﬂ

?&tms - %ﬂ o
3

‘@

[ERN
2

N

Figure 9.12. Subnet interaction Points. A) How a subnet is displayed in a higher
level net. The interaction points are displayed at set positions, on the outside of the
subnet. B) ThePetri Net that makes up the subnet.

9.3.3 Editing a Subnet

Subnets can be edited by selecting the editSubnet icon from the editT ool Bar .
To move the position of interaction points click on one of the interaction
points. The positions of each of the interaction points are then displayed in
the editTable, they can be set to any of eight locations from O to 7. The

numbers in the figure above indicate the numbers of each position.

85

9 USER GUIDE

E‘%Predator Petri Net Editor - * 10l =|
File Modules Edit Help

B EEEEE
0 | = ComponentPropeties Setting
MName subnetd
il | 0.0
Interaction Points Fosition
| 1 |4}
O subnetip3 subnetip2 iz 1
* ¥ * ¥
|\ . . t3 3
%ﬁ'}?m-_);%nm po 7
\l LJJNI I 1l a
*
subMetlps o 10t p2 4
I . n3 1]
t0t3_ _ A gubnetipd
..l + 0
| | |
9
N
Y -
J Back icon
Y
ol
i
IEEJ -
4 | »

Subnet added DADocuments and SettingsiMark WassirwTemp... Position: (186,11}
Figure 9.13. Editing the position of Interaction Points. The editSubnet icon from
the editToolbar has been selected. To modify the locations of the interaction points,
one of them must be clicked on. The positions of the interaction points are then
displayed in the editTable. Position values ranging from 0 to 7 can be enetered. If
there is already an interaction point at the chosen position, then the interaction points
are swapped.

To edit the contents of a subnet, click on the subnet, this will display the
contents of the Petri net for editing. If this level contains subnets they can
also be clicked on to move further down the hierarchy. The back icon
(indicated in the figure above) is used to move back up the hierarchy.

9.3.4 Saving Hierarchical Petri Nets

Hierarchical Petri nets can be saved using a separate file for each subnet, or
the whole hierarchical net can be saved to a single file. To save Petri nets
using a single file, save is selected from the File menu. Otherwise to use a

separate file for each subnet, saveSeparateis selected(figure 9.14).

86

9 USER GUIDE

E&f’,ﬂ'Predatnr Petri Net Editor - *
Modules Edit Help

[eyt

Qpen —
Save

Save separate
Savehs

Exit sU

N {

Figure 9.14. Saving Hierarchical Petri nets. To save a hierarchical Petri Net as a
set of files choose Save separ ate from the file menu. To save as a single *flattened
file' choose Save. To save afile under a different name choose saveAs.

9.4 Editing Petri Net Components

9.4.1 Editing Transitions, Places and Subnets
Selecting the edit icon (on the editToolBar), enables the postions of

trangitions, places and subnets to be changed. It also enables the renaming of
trangitions and places. To edit one of these components click on the mouse
and drag to completely cover the objects that are to be selected. To move
them, press the mouse on one of the selected objects and drag it to the desired
position, see figure 9.15. Some examples of selection have been shown in

earlier diagrams (setting token number of multiple places).

87

E‘%Predator Petri Net Editor - * Untitled
File Modules Edit Help

9 USER GUIDE

=10l x|

]

il

[Clle | L1« Al =l|=

A
il
ol
El

4]

subnetip3

subnetip2

U AT
1 1

etilpd | 10t
tots_ _ netlpd

na

n1

Compone...|Se..

MName

FEEEEREE =3
=1

B

Subnet added DADocuments and SettingsiMark WassinwTemp... Pasition: 12,76}

Figure 9.15. Multiple Selection. All the components of this Petri Net have been
selected. They can be moved by pressing the mouse on top of one of the selected
components and dragging to a new pasition.

The figure above demonstrates that Petri Net components can be selected

together. If only places or asingle type of transition are selected then further

properties can be edited in the editTable. For timed transitions their firing

rate can be edited.

Immediate transitions can have their weight edited.

Editing of these properties is shown in the following two figures (figures 16

& 17).

88

9 USER GUIDE

E‘%Predator Petri Net Editor - * Untitled 10l =|
File Modules Edit Help
FEREEEE
0 | 1 | Component... Setting
MName 10
I il Rate 6.8
| 1]
O subnetip3 subnetip2 0
I\ supnetd 0
L A 0
3 k. | ﬂ
I— subdetips o 101 0
. 1]
tot_ M netlpd il
E] g
9

il

N
i‘l
el

4]

[ull]

p1

B

Subnet added DADocuments and Settingsiark WassimwTemp... Pasition: (9,5)

Figure 9.16. Selecting Timed Transitions. In this figure two timed transitions have
been selected. Entering a new rate in the rate column of the EditTable can alter their
firing rate. Like multiple selection their positions can aso be changed.

E‘%Predator Petri Net Editor - * Untitled 10l =|
File Modules Edit Help
FEREEEE
Dl 1 | Component... Setting
MName 12
I il Weight 1.0
0
O subnetip3 subnetip2
0
I\ supnetd 0
L A 0
3 k. | ﬂ
I— subdetips o 101 0
. 0
tot_ M netlpd il
E] g
9
0
tzl po
1
13

N
i‘l
ol
=

4]

p1

B

Subnet added DADocuments and Settings\Mark WassinwTemp... Position: {234, 461)

Figure 9.17. Sdecting Immediate Transitions.

In this figure two immediate

transitions have been selected. Entering a new weight in the weight column of the
editTable can set their weight.

89

9.4.2 Editing Arcs

9 USER GUIDE

To edit arcs select the editArcsicon. Thiswill display a square in the middle

of each arc as shown in figure 9.18, below. To modify the weight of an arc

click on its square, and change the weight displayed in editable.

E‘%Predator Petri Net Editor - D:\Documents and Settings'Mark Wass'readwrited.xml - |EI|1|
File Modules Edit Help
Ol @
0 | 2 | ComponentProp... Setting
MName a6
il :
Ol po H Weight 1U]
N | (o 0
a
\l 10 p1 0
40/ 0
a 0
a
- | I 0
_ ¢
14
9
. 2 pé
Y
N —O
Y
n3 13
ol
| i
IEEJ
iK1 I _>l_I

Opened DADocuments and SettingsiMark YWassireadwrited xml

Fosition: {(450,503)

Figure

editToolBar.

9.18. Editing Arcs. The EditArc icon

has been selected from the

EditPoints are displayed in the middle of al arcs. To modify the

weight of an arc click on its edit point and enter a new weight in the Weight column
of theediTtable.

9.4.3 Removing Petri Net Components

Components can be removed by selecting the remove components icon from

the edit toolBar. Componenets are then removed by clicking on them. All

90

9 USER GUIDE

arcs associated with places and trangitions are also removed when they are
deleted. The contents of subnets are also removed when subnets are

removed. To clear the canvas click the clear icon on the editToolBar.

9.4.4 Opening, Saving and New Files

The File Menu and File ToolBar enable the user to open and save files and
create new files.

[ﬂgpredatnr Petri Mek E4
(N Mocules Edi |t

Moy

Dpan - 5

Sava

Sawe ceparate \

Savehc Save As

Exit

=l Save
File Menu

Open
New File

Figure 9.19. The FileMenu & File ToolBar.

New — alows the user to create a new file, if the current file has been
modified then the user is prompted to seeifthey want to save thefile

Open — open a Petri Net file — displays a File chooser dialog for the user to
choose afileto open.

Save — save the current Petri Net, if the net is hierarchical it will be saved in
asasinglefilerather than a set of files.

SaveSeparate — saves hierarchical Petri nets as a set of files rather than a
singlefile.

SaveAs — saves a file under a different name. For hierarchica Petri nets the
type of format previously selected is used.

91

9 USER GUIDE

9.5 Petri Net Analysis — Open Architecture

The Predator Petri net editor provides an open architecture, for the dynamic
loading of analysis modules. The current version supports a maximum of
four modules. This enables users to write their own analysis modules and
upload them to the Editor.

9.5.1 Module Interface
Modules that are to be uploaded must follow a basic interface shown below:

public abstract interface Mdule {
public abstract void runhMdul e();
public abstract String getModul eNane();

static final String inputFileName = "current.xm";
}

The runModule() method is called to execute the anaysis module.
GetModuleName(), is called by the editor to obtain the name of the analysis
module.

9.5.2 Loading an Analysis Module

Modules can only be loaded if they are added to the PEditor jar file. The
command to do thisis:

jar uvf PEditor.jar filename

To load an analysis module select load module from the Module menu
(figure 9.20). A diaog or filechooser will be displayed for you to enter the
name of the class you wish to load.

Two menu items are added to the module menu when a module is loaded.
Oneis labdled run moduleName, the other labelled remove moduleName,
where moduleName is the name returned by the modules getModuleName
function.

92

9 USER GUIDE

M Edit Help load Module
load Module run lrvariant analysis

rermove Invariant analysis

=

iy

A B

Figure 9.20. The Module Menu. A). The module menu when no modules are
loaded. The load module menu item is pressed to load a module. B) the module
menu once the invariant analysis module has been loaded. Two menu items are
added for each module loaded; one to run the module and the other to remove the
module.

9.5.3 Running An Analysis Module

To run an analysis module select run moduleName from the module menu.
To remove a module select the appropriate remove moduleName, from the
module menu.

9.6 Invariant Analysis Module

An analysis module to perform invariant analysis has been implemented to
work with the open architecture. The module can be loaded as described in
the previous section. When executed the module displays a dialog (shown in
figures 9.21 & 9.22), giving the P and T invariants as well as the P invariant

equations and information on the liveness and boundedness of the Petri Net.

93

9 USER GUIDE

[F=predator petri Net Editor - Dr\Documents and Settings'Mark Wass'readus -]

File Modules Edit Help
ClalEE] | 2@ln| Bl «) biw s 1

;‘ CompenentPrope. Setting

i
1 0.0
0] S g
invariant Analysis Module x|
N Invatiant Analysis Results for the ourrant et Nat
A P nvaniants T Invariants
-] 00,p1 0,01
-, b1,02,15p4 z,t3
3,04
9|
= P Invariant Equatio Boundedness and Livenass
)
o 50+ p1 - 15
A Bl + p2 + Lipd = 15
~\ 3 +pd = 15
~
ok
ol
0
EL)

4 of]

Madule Loaded Analysis.class Position: (262,205)

Figure 9.21. Invariant Analysis Results. Theinvariant analysis dialog, for the
readers writers problem. When run the invariant analysis module displays its
resultsin adialog.

Egjln\rariant Analysis Module x|

Imvariant Analysis Results for the current Petri Met

P Invariants T Invariants

p0,pl to,tl

pl,p2,15p4 t2,t3

p3,.pd

F Invariant Equatia... Boundedness and Liveness

pld + pl = 15
pl + p2 + 1ipd = 15
p3 + pd = 15

[]

Figure9.22. Theinvariant analysisdialog. The Pand T invariants as well asthe P
invariant equations and statements on the boundedness/liveness of the system are
displayed.

94

