
Imperial College of Science,

Technology and Medicine

(University of London)

Department of Computing

Production of the Extensible Petr i Net Editor /Animator
“ Medusa”

by

Nicholas J. Dingle

Submitted in partial fulfilment

of the requirements for the MSc

Degree in Computing Science of the

University of London and for the

Diploma of Imperial College of

Science, Technology and Medicine.

September 2001

 ii

Abstract

Petri nets are a widely used formalism for the analysis of concurrent systems and

as such there are a plethora of existing tools which allow users to edit, animate

and analyse a range of Petri net classes. These tools are essentially limited,

however, to the functionality incorporated into them when they are written. The

main aim of the project was therefore to produce a basic Petri net editor/animator

tool which could be arbitrarily extended by the user. This was achieved by

designing an architecture which would allow the program to load user-designed

modules about which nothing is known until runtime. The project also provided

an opportunity to design a tool which offered new features not present in existing

pieces of software and which also corrected known flaws in these tools. In

particular, the animator designed as part of Medusa incorporates a novel

backwards animator which allows the user to step backwards through the

sequence of transitions which they have fired.

Two modules were produced as part of the project. The first of these was

designed to use graph theory to analyse Place-Transition nets for properties such

as liveness and boundedness. The second allowed Medusa to interface with an

existing Markov chain analyser called Dnamaca. This permitted Medusa to be

used to perform performance analysis on Petri nets. The implementations of

these modules and of the Medusa tool were validated against a set of known

results.

Results were also produced from an invariant analysis module designed by a

third-party. This was intended to demonstrate that the aim of designing an

extensible tool with a set interface had been achieved successfully. From this it

would be possible to conclude whether or not other parties could design and

implement their own modules which would work correctly.

 iii

Acknowledgements

I would like to express my thanks to the Dr. William Knottenbelt, my supervisor,

for initially suggesting the topic and for his help and enthusiasm throughout the

project’s duration. I would also like to thank my family and friends for their love

and support during the whole of the MSc course.

 iv

Table of Contents

Title Page . i

Abstract . ii

Acknowledgements . iii

Table of Contents . iv

1 Introduction 1

1.1 Motivation . 1

1.2 Report Outline . 2

2 Background 5

2.1 Introduction . 5

2.2 Overview of Petri Net Theory . 5

2.2.1 Place-Transition Nets . 5

2.2.2 Generalised Stochastic Petri Nets (GSPNs) 9

2.2.3 Other Petri Nets . 10

2.3 Existing Tools . 11

2.3.1 DaNAMiCS . 12

2.3.2 Renew . 12

2.3.3 Petri Net Kernel . 12

2.4 Justification for Medusa . 13

3 The Medusa Editor/Animator Architecture 16

3.1 Introduction . 16

3.2 The Editor’s Architecture . 16

3.3 The Animator’s Architecture . 18

3.3.1 Forwards Animation . 19

3.3.2 Backwards Animation . 21

4 Extensibility 24

4.1 Introduction . 24

4.1.1 Overview of How Medusa’s Extensibility Works 24

 v

4.2 The Petri Net Markup Language . 26

4.2.1 JAXP or JAXB? . 29

4.2.2 XML Parsing in Medusa . 30

4.3 Reflection: Loading and Running Modules 31

5 Design and Implementation of a Module for the Analysis of

Place-Transition Nets Using Graph Theory

35

5.1 Introduction . 35

5.2 Properties of Petri Nets Which Can Be Analysed Using

Graph Theory . 35

5.2.1 Analysis of Place-Transition Nets Using Graph

Theory . 37

5.2.2 Analysis of GSPNs Using Graph Theory 40

5.3 Implementation of the Module . 41

5.3.1 Analysis of the Coverability Graph 41

5.3.2 Validation of the Chosen Algorithm 45

5.3.3 Completing the Analysis . 46

6 Design and Implementation of a Module to Interface With

Dnamaca

48

6.1 Introduction . 48

6.2 Dnamaca Input Files . 49

6.2.1 Dnamaca Model Descriptions 49

6.2.2 Dnamaca Performance Measures 52

6.3 DnamacaModule . 53

6.3.1 Model Description Generation 54

6.3.2 Performance Measures . 57

6.3.3 How DnamacaModule Invokes Dnamaca and

Displays Results . 58

7 Validation of Concept and Design Through Analysis of

Generated Results

61

7.1 Introduction . 61

 vi

7.2 Graph Theory Analysis Module . 61

7.3 DnamacaModule . 64

7.4 Running a User-Designed Module . 66

7.5 Conclusion . 70

8 Conclusion 72

8.1 Conclusions . 72

8.2 Opportunities for Future Work . 73

Appendix A: Medusa User Guide . 75

Bibliography . 79

 1

Chapter 1: Introduction

1.1 Motivation

Petri nets are a widely used formalism for the analysis of concurrent systems and

as such there are a plethora of existing tools which allow users to edit, animate

and analyse a range of Petri net classes. These tools are essentially limited,

however, to the functionality incorporated into them when they are written. It is

impossible, therefore, for the user to use the program to perform some function

not supported by it (for example a certain type of analysis) unless they have

access to the source code. Even if they do have such access there is no guarantee

that they will be able to understand and modify it to suit their needs.

Medusa was conceived to address this problem. The main aim of the project was

therefore to produce a basic Petri net editor/animator tool which could be

arbitrarily extended by the user without access to its source code. This would

enable users to investigate the properties in which they are interested. This will

be achieved by designing an architecture which will allow the program to load

user-designed modules about which nothing is known until runtime. As Java

provides a mechanism suitable for this, the tool was conceived from the

beginning as being programmed in this language. The project also provided an

opportunity to design a tool which offered new features not present in existing

pieces of software and which also corrected known flaws of these tools. In

particular, the animator designed as part of Medusa incorporates a novel

backwards animator which allows the user to step backwards through the

sequence of transitions which they have fired. Such a feature is not found in the

tools currently available.

This project aims to produce two modules which will be used to validate the

finished editor. The first module will use graph theory to analyse Petri nets. If

this is successful it will demonstrate that it is possible to extend Medusa’s

functionality through purpose-designed analytical modules. The second module

will allow Medusa to interface with Dnamaca, a Markov chain analyser. If this

 2

module is successful it will show how the extensibility of Medusa allows it to

make use of the analytical tools of existing applications.

In addition, Medusa will be tested with a module designed as part of another MSc

project (see [MW01]). The design of this module has proceeded independently

from Medusa except that details of the interface mechanism were shared. If

Medusa is capable of loading and running this module successfully it will show

that the main aim of this project has been accomplished - namely that it is

possible for a user to design modules suitable for their needs when they only

know the details of the interface.

In order to assess the success of these modules examples from a variety of

sources will be analysed. The results provided in these sources will then be

compared with those generated by the modules. As will be shown below, there

are no discrepancies between the published and generated results and hence the

concept and design of Medusa has been validated.

1.2 Repor t Outline

The layout of the report is:

Chapter 2 provides the background information to this project. An overview of

Petri net theory is provided which covers Place-Transition and Generalised

Stochastic Petri Nets as these are the types supported by Medusa. Some other

common types of Petri net are introduced for completeness. This is followed by a

brief description of some existing Petri net tools which leads on to the

justification for the production of yet another such program.

Chapter 3 details the architecture of the Medusa editor/animator. An Object

Orientated approach is used as well as some fragments of Java code. Medusa

presents Petri nets to the user in graphical form and allows elements to be added

and removed as desired. The functionality of the Medusa animator is also

described. This animator is capable of traditional forwards animation where the

 3

user selects which enabled transition they wish to fire and then updates the

graphical display of the net accordingly. It also allows the user to undo the most

recent firing – a feature known as backwards animation. The various ways in

which this could have been accomplished are described before the

implementation of the method using a stack is justified.

Chapter 4 deals exclusively with the way in which Medusa can be extended with

the addition of user-created modules. This is accomplished through the use of the

Java Reflection mechanism. A description of Reflection in general is given

before the implementation used by Medusa is considered in more detail. Central

to the process of running a module is the parsing of the description of the Petri

net currently opened in Medusa from a Petri Net Markup Language (PNML).

This requires the use of an XML parser and so the two main ways of doing this in

Java (JAXP and JAXB) are detailed. Finally, the decision to adopt the JAXP

method is justified.

Chapter 5 explains how a module which uses graph theory to analyse a Petri

net’s attributes was produced. The mathematical theory which underlies this

process is described in detail to ensure that the reader is aware of the issues which

influenced the implementation. The key issue faced when designing this module

was the implementation of an algorithm capable of describing the strongly

connected components of a graph and it is on this topic that the second part of

this chapter concentrates. The chapter ends by showing that the implementation

of the algorithm adopted produces correct results.

Chapter 6 describes a module which allows Medusa to interface with the

Dnamaca Markov chain analyser. The prime motivation behind this was to

correct a flaw in the implementation of the DaNAMiCS tool which attempts to

perform the same function. It also provided an opportunity to show that Medusa

could be made to interface with existing tools through its modular system. The

implementation of the module uses the incidence function description of Petri

nets to create correct Dnamaca model definitions. DnamacaModule also runs

Dnamaca automatically with the model description it has generated. The way in

which this was accomplished is described.

 4

Chapter 7 validates the concept and implementation of Medusa as an extensible

editor. This is achieved by using the modules described above to produce results

by running them with Medusa and comparing these results against published

versions. This process not only shows that it is possible to produce an extensible

editor capable of running modules but also demonstrates that the specific

implementations of the modules are correct. Particularly important is the fact that

a module produced by a third-party, Mark Wass, is run successfully by Medusa

and produces correct results. This demonstrates that the main concept behind

Medusa, as detailed in the motivation above, has been fulfilled by the

implementation.

Chapter 8 summarises what has been achieved in the course of this project,

presents some conclusions and raises issues which could be addressed in future

work. It is concluded that the project has been a success because of the results

presented in Chapter 7. These demonstrate conclusively that it is possible to

design modules for Medusa without access to the source code which function

correctly.

Appendix A provides a user guide for the Medusa editor/animator.

 5

Chapter 2: Background

2.1 Introduction

The aim of this chapter is to introduce the reader to the project’s background.

First an overview of the mathematical modelling formalism of Petri nets is

provided which covers the nets supported by Medusa as well as introducing

briefly some of the other forms which exist. This is followed by a section

detailing the existing pieces of Petri net modelling software. This section will

identify why there is the need for another piece of software in what is already a

well-provided field.

2.2 Overview of Petr i Net Theory

Petri nets were invented by Carl Adam Petri in 1962 as a formalism for

describing and reasoning about concurrent systems [BK95]. They have been

used to model a variety of such systems, including communication protocols,

parallel programs, multiprocessor memory caches and distributed databases

[KNO99]. Petri initially described Place-Transition nets but numerous other

classes of nets have since been defined to allow more sophisticated reasoning.

One such class of nets is Generalised Stochastic Petri Nets (GSPNs) which

introduce time as a variable and thus allow performance analysis of the modelled

system to be conducted. This chapter is mostly concerned with Place-Transition

nets and GSPNs as these are the two forms of Petri nets which can be modelled

with the Medusa editor, but brief mention will also be made of some of the other

types which exist.

2.2.1 Place-Transition Nets

Place-Transition nets are the basic type of Petri net from which all other types are

derived. As described in [BK95], they consist of four elements:

 6

• places, which are represented by circles and model conditions or

objects such as program variables.

• tokens, which are represented by black dots. These are contained

within places and represent the specific value of the condition or

object which that place represents. The initial arrangement of tokens

on places is known as the initial marking of the Petri net.

• transitions, which are represented by hollow rectangles and model

activities which change the values of conditions and objects.

• arcs, which are represented by lines connecting places and transitions.

These indicate which objects are changed by which activities. As

Place-Transition nets are bipartite, arcs may only connect places to

transitions or transitions to places, but not places to places or

transitions to transitions. An arc may have a weight, which specifies

how many tokens are created or destroyed when a transition to which

it is attached is fired.

All of these can be seen in the illustration of a simple Place-Transition net in

Figure 2.1.

 p 1 t1 p2

 t3 t2

 p3

Figure 2.1: A Place-Transition net.

 7

A Place-Transition net can be defined formally using functional notation:

Definition 2.1 A Place-Transition net is a 5-tuple PN = (P,T,I−,I+,M0) where

• P = {p1, . . . , pn} is a finite and non-empty set of places,

• T = { t1, . . . , tm} is a finite and non-empty set of transitions,

• P T = Ø,

• I−,I+ : P x T 0 are the backward and forward incidence functions

respectively. If I−(p,t) > 0, an arc leads from place p to transition t,

whilst if I+(p,t) > 0 then an arc leads from transition t to place p,

• M0 : P 0 is the initial marking. [BK95]

The Petri net in Figure 2.1 could therefore be described as PN = (P,T, I−,I+,M0)

where

• P = {p1, p2, p3,} ,

• T = { t1, t2, t3,} ,

• I−(p1,t1) = 1, I−(p2,t2) = 1, I−(p3,t3) = 1. All other values of I− are zero,

• I+(p1,t3) = 1, I+(p3,t2) = 1, I+(p2,t1) = 1. All other values of I+ are zero,

• M0(p) = 1 if p = p1, M0(p) = 0 otherwise, ∀p ∈ P.

The dynamic behaviour of a Petri net is determined by rules concerning the

enabling and firing of transitions, as described in [BK95]. When the arcs

connecting a transition to its input places have a weight of one, the transition is

enabled if all of its input places are marked with at least one token. Only an

enabled transition may fire. When it does one token on each of its input places is

destroyed and one token is created on each of its output places. It is possible,

however, for an arc to have a weight greater than one. In this case, if the arc is an

input arc then the transition is only enabled if the number of tokens on the place

to which it is connected is equal to or greater than its weight. When then

transition is fired, the number of tokens destroyed on the place is equal to the

arc’s weight. If it is an output arc, firing the transition creates the number of

tokens on the output place equivalent to the arc’s weight. The numerical values

of each of the I− and I+ functions correspond to the weights of the arcs connecting

 8

places and transitions. By convention arc weights of 1 are not shown explicitly

[BK95]. In Figure 2.1, it can be seen that t1 is the only enabled transition as there

is one tokens on p1. The effect of firing t1 is shown in Figure 2.2.

 p1 t1 p2

 t3 t2

 p3

Figure 2.2: The effect of firing the enabled transition of the net in Figure 2.1.

The rules for the enabling and firing of transitions can be formalised thus:

Definition 2.2 If PN = (P,T,I−,I+,M0) is a Place-Transition net

• A marking of a Place-Transition net is a function M : P 0 , where

M(p) is the number of tokens on place p

• A set P ⊆ P is marked at marking M, iff ∃p ∈ P : M(p) > 0; otherwise

P is unmarked or empty at M

• A transition t ∈ T is enabled at M, denoted by M[t >, iff M(p) ≥ I−(p,t)

∀p ∈ P

• A transition t ∈ T, enabled at marking M, may fire yielding a new

marking M’ where

M’ (p) = M(p) − I−(p,t) + I+(p,t) ∀p ∈ P

 denoted by M[t > M’. In this case M’ is directly reachable from M

and we write M M’. Let
�

be the reflexive and transitive closure

of . A marking M’ is reachable from M, iff M
�

M’.

•
�������	��

������������
���������� �!�"�$# ����
%��&��'�������(��
)���*�+�,&-�.#�
����-&/�0�

1�

= t1 . . . tn

n ≥ 0 such that there are markings M1, . . . ,Mn+1 satisfying Mi[ti > Mi+1

∀i = 1, . . . , n. A shorthand notation for this case is M1[> and

 9

M1[> Mn+1 243	5�673�8:9<;�=�31> ?A@CB(D�3E3�FG6H9 ?7I);�2J;�K:LM5N3�O�P
3�KQ8�3*P15SR�3	K�T�9U3�RWVX?
and M[> M always holds. [BK95]

The firing of a transition when the Petri net has one marking creates a new

marking. The set of all markings which are reachable from M0 is known as the

reachability set of the Petri net and the connections between the markings in this

set are represented by the reachability graph [BK95]. The use of such graphs in

the analysis of the attributes of a given Petri net, for example whether or not it is

live, is examined below in Chapter 5.

Place-Transition nets do not contain any concept of time and as such cannot be

used as a performance analysis formalism [KNO99]. There are, however, a

number of time-augmented Petri net formalisms which can be used to model

performance. One of the most widely used is the Generalised Stochastic Petri

Net (GSPN) and it is these which Medusa supports.

2.2.2 Generalised Stochastic Petr i Nets (GSPNs)

GSPNs have two types of transitions: immediate and timed. An enabled

immediate transition fires in zero time whilst enabled timed transitions fire after a

random exponentially-distributed delay (usually designated as rate λi for

transition ti). Timed transitions are represented as hollow rectangles whilst

immediate transitions are filled. If only timed transitions are enabled, the

probability of one transition ti which is a member of the set of enabled transitions

(ENT(M)) firing is given in [BK95] as:

 λi
j:t j ∈ EN T (M) λj

When ENT(M) contains only one immediate transition, that transition fires with

probability 1.0. If, however, it contains more than one such transition, the

relative frequency with which they fire is determined by using their assigned

weights. Given the simultaneously enabled immediate transitions t1, . . . , tn with

 10

corresponding weights w1, . . . , wn , the probability of ti firing is given in

[KNO99] as:

 wi
k=1 wk

A GSPN can be defined formally thus:

Definition 2.4 A GSPN is a 4-tuple GSPN = (PN,T1 ,T2 ,W) where

• PN = (P,T,I−,I+,M0) is the underlying Place-Transition net,

• T1 ⊆ T is the set of timed transitions, T1 ≠ Ø,

• T2 ⊆ T denotes the set of immediate transitions, T1 T2 = Ø, T = T1 ∪

T2,

• W = (w1, . . . , w|T|) is an array whose entry wi ∈ + is either

• a possibly marking dependent rate of a negative exponential

distribution specifying the firing delay, when transition ti is a

timed transition, i.e. ti ∈ T1, or

• a possibly marking dependent firing weight where transition ti

is an immediate transition, i.e. ti ∈ T2. [BK95]

As described in [BK95], a GSPN has two types of markings. Immediate

transitions fire in zero time and as such the time spent in markings with enabled

immediate transitions is also zero. These markings are known as vanishing

markings as a random observer will never see them. However, markings which

enable only timed transitions will be observed as they are not left immediately.

These are known as tangible markings.

2.2.3 Other Petr i Nets

Two other common forms of Petri nets are Coloured Petri Nets (CPNs) and

Queuing Petri Nets (QPNs). As Medusa does not support either only a brief

outline is presented below. Readers wishing to know more are directed to the

bibliography, especially those texts which comprise the sources for this chapter.

 11

One problem with Place-Transition nets and GSPNs is that their graphical

representations can become very confused for large or complex systems.

Coloured Petri Nets are intended to remedy this problem and are fully described

in [BK95]. In a CPN tokens are assigned different colours and the transitions

have different firing rules based on the colours of the tokens on their input places.

They have not been included in Medusa because they add no expressive power; it

is possible uniquely to unfold every CPN into an uncoloured Petri net

representing the same model [KNO99].

As described in [KNO99], Queuing Petri Nets are an attempt to overcome the

difficulties faced when modelling queues with GSPNs. Queuing Petri Nets

integrate the concept of queues into a coloured version of GSPNs (CGSPNs). To

summarise briefly, a queued place has two components: the queue and the

depository for tokens which have been serviced at this queue. Tokens which

arrive at a queued place are placed in its queue for service and are not available to

output transitions until they have exited the queue and been placed in the

depository. QPNs are therefore a convenient way of modelling queues using

Petri nets but their use is somewhat specialised and they have, for that reason, not

been supported by Medusa.

2.3 Existing Petr i Net Tools

There are a huge number of pre-existing Petri nets tools. For example, one web-

page contains links to 43 different pieces of software designed explicitly for the

creation and analysis of Petri nets.1 A number of examples tools which illustrate

the range available are given below before some of the problems with existing

tools are elucidated. This leads to a justification as to why yet another piece of

software is needed in what would seem to be an over-crowded field.

1 See http://www.aut.utt.ro/~mappy/petri/home.html

 12

2.3.1 Data Network Architecture - Modelling Concurrent Systems
(DaNAMiCS) [DAN]

DaNAMiCS is an improved version of DNAnet, another Petri net tool. It

supports Place-Transition, Generalised Stochastic and Coloured Petri Nets, and

allows the user to insert subnets into other nets. It has an animator which allows

the user to fire enabled transitions but has no facility to undo a firing. Its analysis

suite is highly comprehensive and includes a simulator as well as invariant and

graph-theory based analysis tools. It also has the ability to perform steady-state

analysis of a Petri net by exporting it to Dnamaca, a Markov-chain analyser.

2.3.2 Reference Net Workshop (Renew) [REN]

In contrast to DaNAMiCS, Renew is simple and does not offer the same range of

analysis tools as DaNAMiCS. Its only tool is a simulator. It does, however,

incorporate some interesting features. The design is intended to be of open-

architecture and the source code is freely distributed so that users with knowledge

of Java programming can customise it as much as they want (including adding

analysis tools). Also, it has the ability to export nets in an XML-based format

which could be read or produced by other tools without knowledge of the internal

architecture of Renew.

2.3.3 Petr i Net Kernel [PNK]

Like Renew, Petri Net Kernel is much simpler than DaNAMiCS. As its name

suggests it is not intended as a complete tool in its own right but as the basic unit

around which the user can construct, in Java, a more sophisticated application. It

uses XML heavily both to save nets created in it by the user and to define valid

net classes and tools created by the user to suit their particular needs. The only

analysis tool which it includes is a simulator.

 13

2.4 Justification for Medusa

Given this range of existing software, why is there a need for another tool to be

produced? The production of Medusa can be justified on two levels: it corrects

known flaws in existing tools’ implementations and it offers services which no

other application does.

As described above, DaNAMiCS is able to perform steady-state analysis by

exporting nets to the Dnamaca Markov chain analyser. There is a flaw in its

implementation, however, which causes it to generate incorrect results when a

place is both the input and the output place of a transition. If a user does not have

access to DaNAMiCS’ source code there is no way to rectify this. Medusa,

however, offers the ability to solve the problem as a user can write a module to

perform the conversion correctly. Furthermore, the conversion in DaNAMiCS is

entirely automated and therefore does not allow the user to investigate exactly the

properties of the net in which they are interested. A Dnamaca interface module

could improve upon this by allowing the user to customise the Dnamaca file

which it produced before passing it to Dnamaca. Of course, this does not apply

exclusively to Dnamaca. A similar module can be produced to allow the

conversion of Petri nets into a format suitable for input into another tool.

Medusa attempts to offer a range of services which no other tool does. Tools like

DaNAMiCS offer an enormous range of analysis options, but that range is still

limited and if the user wishes to do something not included in this range then they

must either find another tool or obtain the source code and modify it

appropriately. The design of Medusa, therefore, is intended to produce a tool

with an open architecture, supporting basic features like editing and animation

but allowing the user to create modules to perform specific tasks without having

to start from scratch or modify somebody-else’s code. The Petri Net Kernel aims

to do something similar but the basic functionality which it includes is less than

that of Medusa. Consequently it requires more work to produce the same results.

The XML format of Renew is a very interesting feature as it promotes

interoperability between tools. It allows Petri nets to be defined textually and so

 14

to be inputted to and outputted from other tools. The problem is that it is an

entirely arbitrary format created by the programmers of Renew and therefore

requires that other programmers have heard of the tool and know of its XML

format if they are to incorporate it in their own programs. A better solution

would be to adopt a generally recognised XML format about which others are

likely to have heard. This ensures that a ‘standard’ output format genuinely is

standard. The Petri Net Markup Language [PNML] is an attempt to introduce

just such a format and it is this which Medusa uses as a standard output format.

 15

 1+

 start

 end

Figure 3.1: Object diagram of the structure of a Petri net as represented in

Medusa

Element

name: String
comment: String

draw(Graphics): void

Node
centreX: int
centreY: int
height: int
width: int

move(int, int): void

Arc

weight: Integer

Place

tokens: Integer

alterTokens(int): void

Transition

fire(): boolean
unFire(): boolean
rotate(): void
isEnabled():boolean

ImmediateTransition

weight: String

TimedTransition

rate: String

PetriNet

 16

Chapter 3: The Medusa Editor /Animator Architecture

3.1 Introduction

The aim of this chapter is to provide details of the architecture of the basic

Medusa package. The program is composed of two main parts, the editor (which

allows the user to enter Petri nets through a graphical interface) and the animator

(which allows the user to move tokens around a net). The layout of this chapter

reflects this structure by considering each in turn.

For the editor, the emphasis is on the internal representation of Petri nets used by

Medusa. This is fundamental to the success of the project as a whole: if Medusa

does not represent Petri nets correctly then it will fail even if other features are a

success.

For the animator, the way in which transitions are checked to see if they are

enabled is detailed, as is the way in which firing them is handled. Together these

allow the user to perform forwards animation on the displayed Petri net. A

special feature of the Medusa animator is its ability to perform backwards

animation. There were two main ways in which this could have been

implemented and so both options are explored before the choice adopted is

justified.

3.2 The Editor ’s Architecture

The editor is the core component of Medusa as it is through this that the user can

add to and remove elements from the net which they are editing. This is

accomplished through the Graphical User Interface (GUI) shown in Figure 3.2.

 17

Figure 3.2: The appearance of the Medusa GUI.

The row of buttons below the menu bar allows the user to select which function

they wish to perform. The large white panel below these buttons, known as the

Pet r i Net Panel , displays the Petri net currently being edited. By clicking with

the mouse on a button and then clicking on a location on the Pet r i Net Panel the

appropriate action, such as adding a place, is performed at that location.

The object diagram in Figure 3.1 shows how Petri nets are represented in Java

classes behind this Pet r i Net Panel . Note that not every function which exists in

the source-code is shown on this diagram – there are, for example, a number of

functions in the Pet r i Net class which deal with the addition of various types of

element through the GUI which are not reproduced as they do not affect the way

in which Medusa represents the nets.

Figure 3.1 expresses the structure of Medusa’s internal representation very

succinctly. The Pet r i Net stores its constituent el ement s in four Vect or s , one

each for Pl aces , Ar cs, Ti medTr ansi t i ons and I mmedi at eTr ansi t i ons.

Vect or s are an ideal collection class for this as they can be iterated over in the

 18

same manner as C++ arrays, which makes it easy to locate specific elements.

They can also be resized dynamically. This means they can be initialised

containing no elements but then as the user adds elements to the Petri net these

elements can be added to the correct Vect or . Elements can also be removed

from Vect or s and a Vect or will resize itself automatically when this happens.

This is used when the user wishes to delete elements from the net as the selected

element is removed from the Vect or in which it is located.

The storage of the transitions which make up the net in two separate Vect or s

could be criticised as in order to access all transitions, for example when drawing

all transitions, first one Vect or and then another must be iterated over. This is

not a flaw, however, as it simplifies the process of checking exclusively for one

type of transition – for example when checking if any immediate transitions are

enabled before doing so for timed transitions (see below).

3.3 The Animator ’s Architecture

Medusa’s animator has two modes of operation: forwards (or manual) animation

and backwards animation. The first mode can also be found in the animators of

existing tools like DaNAMiCS. It allows the user to select which transition they

would like to fire and then performs the act of firing if the selected one is

enabled, altering the marking of the net accordingly. All of this presented on the

graphical display and so as the user fires a sequence of transitions they can

observe the tokens moving around the net.

The second mode (backwards animation) is not supported by many tools. Its

effect is to undo the firing of the most recently fired transition. This allows the

user to step backwards through the sequence of fired transitions in order to

correct mistakes or experiment with a different sequence. The various ways in

which this could have been implemented are considered below before the actual

way in which it was done is described and justified.

 19

3.3.1 Forwards Animation

When the animator is started Medusa waits for the user to click on the

Pet r i Net Panel . If a click occurs, its coordinates are compared with those of all

transitions. If it occurs within a transition and that transition is enabled, the

transition is fired and the display updated accordingly.

Checking to see if a mouse-click event occurs within a transition is

straightforward as mouse-clicks have an (x, y) location in the same way as all

Nodes of a Petri net. As the centre points and sizes of all Nodes on screen are

known, whether or not a click occurs over a certain transition can be easily

computed.

Having located the transition which the user wishes to fire, Medusa then attempts

to fire that transition. The first step is to check that the transition is enabled. As

described in Chapter 2, this is only the case if the all of the transition’s input

places are marked with at least the number of tokens specified by the arcs

connecting these places to the transition. There is a further complication if the

net is a GSPN and the user wishes to fire a timed transition as it is necessary first

to ensure that there are no enabled immediate transitions. This is because

immediate transitions fire in zero time and so fire before timed transitions. The

pseudocode for the function which is used by timed transitions to check if they

are enabled is shown in Figure 3.3. Note that the routine used by immediate

transitions is identical except that the status of other immediate transitions is not

checked first.

If the transition is enabled then it can be fired. First, the numbers of tokens

specified by the weights of the connecting arcs are destroyed on the transition’s

input places. Then the correct numbers of tokens are created on the transition’s

output places, again according to the weights of the arcs connecting the transition

to these places. The complete algorithm for achieving this is shown is Figure 3.4.

It starts with a call to the routine in Figure 3.3 which checks if the transition is

enabled. If it is not, the firing routine terminates, otherwise the creation and

destruction of tokens proceeds.

 20

publ i c bool ean i sEnabl ed() {
 f or (ever y i mmedi at e t r ansi t i on) {
 i f (t hat t r ansi t i on i sEnabl ed())
 r et ur n f al se;
 }

f or (ever y ar c) {
 i f (t hat ar c ends at t hi s t i med t r ansi t i on) {
 / / get t he pl ace at t he st ar t of t he ar c;

 i f (t he number of t okens on t hat pl ace i s

 l ess t han t he wei ght of t he ar c) {
r et ur n f al se;

 }
 }
 }
 r et ur n t r ue;

}

Figure 3.3: Pseudocode used by a timed transition to identify if it is enabled

publ i c bool ean f i r e() {

 i f (i sEnabl ed()) {
f or (ever y ar c) {

i f (t hat ar c ends at t hi s t r ansi t i on) {
 / / get t he pl ace at t he st ar t of t he ar c
 / / and al t er t he number of t okens on i t

/ / by t he wei ght of t he ar c
 }
 }

f or (ever y ar c) {
i f (t hat ar c st ar t s at t hi s t r ansi t i on) {

 / / get t he pl ace at t he end of t he ar c
 / / and al t er t he number of t okens on i t

/ / by t he wei ght of t he ar c
 }

}
r et ur n t r ue;

 }
 r et ur n f al se;
 }

Figure 3.4: Pseudocode representation of the routine by which the animator

assess if a transition can fire and then performs the firing if it can

As this is a direct implementation of the rules for the dynamic behaviour of Petri

nets as outlined in Chapter 2 this scheme gives the correct results. In order to aid

the users of Medusa, when the animator is in use the transitions which are

currently enabled are highlighted in red. This is shown in the screenshot in

 21

Figure 3.5. Note that t1 is an immediate transition and as such prevents t3, a

timed transition, from being enabled even though there is one token on p3.

Figure 3.5: Screenshot showing Medusa whilst the animator is being used. Note
that the only enabled transition, t1, is highlighted.

When the user ends manual animation the net reverts to the marking which

existed prior to the animator being enabled.

3.3.2 Backwards Animation

A novel feature of the animator provided with Medusa is the ability to do

backwards animation. This is a feature lacking from DaNAMiCS. This gives the

user the ability to backtrack whilst animating so they can retrace their steps whilst

animating to try different choices or to correct mistakes. This is achieved by

undoing the effect of firing the most recent transition to have been fired. There

were two possible ways in which this could be achieved, namely by redoing all

but the final transition which has been fired or by using a stack.

 22

In this first method, a list of all transitions which have been fired is maintained.

When the user wishes to step backwards through the animation, the net reverts to

the initial marking and the effect the firing of each transition in the list is applied

until the penultimate firing is reached. The resulting marking can then be applied

to the net as a whole. The problem with this method is that it is inefficient: if n

transitions are fired the cumulative effect of firing n-1 transitions must be

calculated to undo one firing. Hence the larger the value of n the longer this

process will take.

A much more efficient implementation is achieved through the use of a stack.

Every time a transition is fired, details about it are pushed on to a stack. When

the user wishes to perform backwards animation details about the last transition

to be fired are popped off the top of the stack and, using these details, the

transition is identified and then ‘unfired’ . The general operation of a stack is

shown in Figure 3.6. This method is more efficient as stepping backwards to the

previous marking only requires the calculation of the effects of ‘unfiring’ one

transition, no matter how many transitions have been fired up to that point. For

this reason it was this method which Medusa implements.

 empty push(A) push(B) pop() push(C)

Figure 3.6: General operation of a stack

The implementation of the stack method was aided by the fact that Java provides

a ready-made St ack ADT with Obj ect push(Obj ect i t em) and Obj ect

pop() methods. In Medusa, every instantiated Pet r i Net object has a St ack

called t r ace which is used when animating. Whenever a transition is fired, its

name is pushed on to t r ace and when the user wishes to step backwards the top

name is popped off and used to identify the transition to be ‘unfired’ . The

pseudocode representation of the routine for retrieving the correct transition is

shown in Figure 3.7.

 A A

 B

 A A

 C

 23

publ i c voi d s t epBackwar ds() {
i f (t her e i s at l east one t r ansi t i on on t he st ack) {
 St r i ng name = (St r i ng) t r ace. pop() ;

 Tr ansi t i on t = get Tr ansi t i on(name) ;
 i f (t i s a val i d t r ansi t i on) {

t . unFi r e() ;
}

}
}

Figure 3.7: Pseudocode of the function used for retrieving the transition whose
firing is to be undone.

Once the transition has been identified the effects of its last firing can be undone.

This process of ‘unfiring’ a transition is the exact opposite of firing it – the

number of tokens specified by the output arcs’ weights are destroyed on the

output places and the number of tokens specified by the input arcs’ weights are

created on the input places. The marking of the net which existed before that

transition was fired is therefore restored.

This chapter has examined the structure of the two basic components of Medusa.

The aim of the project, however, was to create an extensible editor to which the

user could add functionality through modules. The next three chapters, therefore,

will detail the mechanism by which Medusa supports this and describe the

production of two such modules. The success of the implementation is assessed

in the penultimate chapter.

 24

Chapter 4: Extensibility

4.1 Introduction

The aim of this chapter is to detail the mechanism by which Medusa supports the

addition of user-designed modules about which nothing is known at compile-

time. This mechanism contains two import elements. Firstly, XML is used to

define saved nets. The format of the language used is the Petri Net Markup

Language (PNML) which is a proposed standard for the interchange of Petri nets

between various tools. There were a variety of ways in which files containing

nets defined in this language could be parsed by Medusa. The section below lays

out the advantages and disadvantages of each method. Secondly, the loading and

running of modules is handled through the Java Reflection API. An overview of

this mechanism is given as well as details of its specific implementation in

Medusa. The Java interface which all modules must implement in order to be

compatible with Medusa is given in this section.

Taken together these two elements define the interface through which Medusa

interacts with user-designed modules. In order for Medusa to be considered a

success, therefore, it should only be necessary for users wishing to design their

own modules to understand the contents of this chapter. The only information to

which a third party need have access is this description of the interface. If their

modules adhere to the guidance given herein they should be able to be loaded and

run by Medusa with no problems.

4.1.1 Overview of How Medusa’s Extensibility Works

This section gives a step-by-step guide to the process of loading and running a

module. In order for Medusa to run a module, the module must implement the

Modul e interface shown in Figure 4.1. The use to which each method is put is

covered in the step-by-step guide

 25

publ i c i nt er f ace Modul e {
s t at i c f i nal St r i ng i nput Fi l eName = " cur r ent . xml " ;

 publ i c voi d r unModul e() ;
 publ i c St r i ng get Modul eName() ;
}

Figure 4.1: The Modul e interface.

When a module is loaded and run the following events occur:

1) When the user selects “Load Module” from the “Module” menu, a

standard Swing f i l e_chooser dialog is opened. From this, the user

selects which Java . c l ass file containing the desired module. An

instance of the module thus specified is created through Reflection.

Modules must have a parameterless constructor.

2) A “Run Module” option is added to the “Module” menu. The “Module”

menu will now resemble the screenshot shown in Figure 4.2.

3) When the user selects “Run Module” from the menu, Medusa saves the

Petri net being currently edited under the name cur r ent . xml and

Reflection is again used to invoke the r unModul e() method of the

module.

4) This causes the module to run. Typically it will have to parse

cur r ent . xml into its internal representation of a Petri net before

executing further.

Figure 4.2: Screenshot showing the appearance of the Module menu when a

module has been loaded and is ready to be run.

 26

4.2 The Petr i Net Markup Language [JKW08/00] [PNML]

The Extensible Markup Language (XML) is a meta-markup language which

defines the rules by which users can define their own markup languages based on

tags [ERH99]. These tags define the meaning and structure of the elements in the

document in which they occur rather than the way in which that document is

formatted. This ability to customise a language to suit specific needs has lead to

XML becoming used in a variety of fields. As described in [ERH99], there are

XML languages for describing topics as varied as chemical formulae,1 musical

scores2 and job advertisements3.

XML is easy to read and write as it is non-proprietary and composed entirely of

ASCII characters [ERH99]. It can also be understood by a human reader. This

makes it ideal for use as a language for exchanging data between pieces of

software as the applications involved need only understand how to read XML and

not the proprietary data formats which each uses (many applications exploit this –

see [ERH99]). As Medusa is designed to be extensible, such a language is ideal

as it allows it the saving of nets in a way which permits other tools to load them.

Medusa will also be able to load nets created in another tool in the same fashion.

Given that Petri nets are a commonly used modelling formalism, it should come

as no surprise that attempts are being made to introduce a standard format for the

interchange of Petri nets. This format is called the Petri Net Markup Language

[JKW08/00] [PNML].

PNML is not the first time that XML has been used as a language for the

definition of Petri nets, however. As detailed in [KW00], the Renew application

supports the export of nets in XML. The problem with the format, however, is

that it is geared exclusively towards the needs of Renew and as such contains

data concerning the way in which that tool displays the nets which would be of

no use to another piece of software. For example, it saves the colour of element

and the font used to display their labels. Medusa, however, does not store either.

1 See http://www.xml-cml.org/
2 See http://www.oasis-open.org/cover/mnml199906.html
3 See http://www.hr-xml.org/channels/home.htm

 27

At the same time, PNML is designed as a generic language for representing Petri

nets without worrying how each tool represents them (graphically or otherwise).

It is also being developed as a standard for all tools and is not just implemented

by one of tools amongst the range available. It therefore seems ideally suited to

the role of being the exchangeable saved-file format of Medusa.

PNML is not the only attempt to define a standard Petri net exchange language.

A number of other text-based formats have been suggested. These include the

Abstract Petri Net Notation (APNN) [BKK94] and the format used by

Design/CPN [LM00]. Neither were suitable however. APNN defines the

structure of the net without any tool-specific implementation details. However,

the way in which GSPNs were represented is not very intuitive as it does not have

transitions which were explicitly “ timed” or “ immediate” but merely of priority

“0” or “1” [APNN]. APNN also lacks a way of representing the graphical layout

of a Petri net and so a tool using it as a file format would have to employ a graph-

drawing algorithm to draw nets saved in this language. The complexity of such

algorithms would greatly increase the difficulty of programming such a tool. The

Design/CPN format was rejected for the same reasons as the Renew XML format

– namely that it is a proprietary format which is only used by a single tool.

PNML has two further attributes which makes it the most attractive choice for

Medusa’s file format. Firstly, it supports the addition of user-defined Petri net

types [JKW0/00]. This means that although it does not explicitly support timed

and immediate transitions as used in GSPNs, it can easily be modified so to do

and will still be understood by other tools. Secondly, it is an XML based format.

This is a great advantage as there are standard APIs for parsing to and from XML

in Java which could be implemented. Had APNN been chosen for example, the

construction of a parser suitable for reading files saved in that format would have

been much more time-consuming. In order to illustrate the PNML format, Figure

4.3 shows a net and its corresponding PNML description. As can be seen PNML

is easy to understand. In between the <pl ace i d=" p1" > and </ pl ace> tags,

everything about that place is described. The value of its initial marking is

contained between tags of that name, whilst its on-screen location is found in the

<posi t i on / > tag, which is marked as containing graphical information.

 28

Transitions are similarly described, whilst arcs record their start and end as the

nodes which they connect.

 p1 t1

<?xml ver s i on=" 1. 0" ?>
 <net i d=" n1" t ype=" nul l " >
 <name>
 <val ue>C: \ PNML Exampl e. xml </ val ue>
 </ name>

 <pl ace i d=" p1" >
 <gr aphi cs>
 <posi t i on x=" 141" y=" 79" / >
 </ gr aphi cs>
 <name>
 <val ue>nul l </ val ue>
 <gr aphi cs>
 <of f set x=" - 15" y=" - 15" / >
 </ gr aphi cs>
 </ name>
 <i ni t i al Mar ki ng>
 <val ue>1</ val ue>
 <gr aphi cs>
 <of f set x=" 0" y=" 0" / >
 </ gr aphi cs>
 </ i ni t i al Mar k i ng>
 </ pl ace>

 <t r ansi t i on i d=" t 1" t ype=" t i med"

di st r i but i on=" exponent i al " r at e=" 1. 0" >
 <gr aphi cs>
 <posi t i on x=" 206" y=" 77" / >
 </ gr aphi cs>
 <name>
 <val ue>nul l </ val ue>
 <gr aphi cs>
 <of f set x=" - 15" y=" - 15" / >
 </ gr aphi cs>
 </ name>
 </ t r ansi t i on>

 <ar c i d=" a1" sour ce=" p1" t ar get =" t 1" >
 <gr aphi cs>
 <posi t i on x=" 170" y=" 75" / >
 </ gr aphi cs>
 <i nscr i pt i on>
 <val ue>1</ val ue>
 <gr aphi cs>
 <of f set x=" - 15" y=" +20" / >
 </ gr aphi cs>
 </ i nscr i pt i on>
 </ ar c>

 </ net >

Figure 4.3: A Petri net and its corresponding PNML description

 29

4.2.1 JAXB or JAXP?

There are two packages for handling XML input and output in Java available

from Sun Microsystems: Java Architecture for XML Binding [JAXB] and the

Java APIs for XML Processing [JAXP].1 JAXB creates a two-way mapping

between XML documents and Java objects. It does this through a user-provided

schema which defines how XML elements relate to the attributes of the Java

classes which they describe [JAXB]. This is then used by the JAXB compiler to

generate classes which have the in-built ability to be created from XML and to

create an XML representation of themselves through their unmar shal () and

mar shal () methods respectively. This removes the need for the user to write

their own code to parse and furthermore guarantees that the XML which is

produced will be valid [JAXB].

JAXP is a package which provides a variety of methods for parsing XML, all of

them using Crimson as the reference implementation. It provides Java classes

which are used by the programmer to implement two of the most common

standards for XML parsing: Document Object Model (DOM) and the Simple API

for XML version 2 (SAX2). As described in [JDC], DOM parses the entire XML

document into a Document object in memory. This object contains a tree of

Nodes which correspond to the elements between the tags of the XML

representation. These nodes can then be manipulated to extract or modify the

data held in the XML document [JDC]. It is also possible to create new XML

documents through the DOM API.

SAX2 employs a very different method which is also described in [JDC]. As a

SAX2 parser reads through an XML document it calls event handlers when

certain tag types, for example those marked as the start (<..>) or the end (</..>),

are encountered. In order to implement a SAX2 parser, therefore, the user has to

specify what should occur when these handlers are called. SAX2 has no in-built

means of creating XML documents as DOM does, and it does not “remember”

what has been read by previous executions of the same event handler unless the

1 Both are available from http://java.sun.com/xml

 30

user provides appropriate storage variables [JDC]. If the XML document is very

complicated this method can be difficult, but SAX2 has the advantage over DOM

in that it is faster and that it uses less memory. This is because it does not have to

create and maintain a representation of the entire document in memory.

It was decided to use the SAX2 parsing method in Medusa. As the complexity of

a PNML document (defined as this different types of XML element which it can

contains) is fairly low even for large Petri nets, the added complexity of JAXB

and DOM out-weighed their benefits. The lack of an in-built XML document

generator in SAX2, a feature which is present in JAXB and DOM, was not a

draw-back as generating a PNML description of a net from the Medusa

representation can be accomplished without too much trouble using standard

ASCII character-to-file writing techniques (see below).

It must be recognised, however, that JAXB has much to recommend it, especially

the ease with which objects can be created from XML documents and vice-versa.

It suffers, however, from being an experimental technology which does not work

under Windows. This negates the platform-independence which Medusa enjoys

as a Java application. Also, it has to be written into the application from the

beginning.

4.2.2 XML Parsing in Medusa

This comprises two parts: writing out files in XML and parsing them back in to

recreate saved nets.

From Figure 4.3 it will be seen that a PNML representation of a Petri net can be

generated easily from the way in which they are described internally be Medusa.

It is achieved simply by writing out ASCII characters to a file through a standard

output stream, first of all describing all places (the contents of the pl aces

Vector) then all transitions (the i mmedi at eTr ansi t i ons and

t i medTr ansi t i ons Vectors) and finally all arcs (the ar cs Vector). The

 31

attributes of each place, transition or arc correspond to the fields of the PNML in

an obvious way. The Medusa name of each place becomes its PNML "id", whilst

the comments become the PNML "name". Similarly, the location of each

element stored by Medusa is written in the <posi t i on> tag. The division of

transitions in Medusa between two Vect or s , one for immediate and one for

timed, does not create a problem even though a PNML document written in this

manner will not describe the transitions in ascending numerical order. All

transitions are still defined before they are used in the descriptions of the arcs and

so no problems arise.

Parsing the data back in is slightly more complicated, however. The SAX2

method parses the document as it is read based on the contents of the tag which it

is currently reading. For example, when a <pl ace> tag is encountered, the XML

parser calls the st ar t El ement () handler. The values stored in the XML are then

read out as they are encountered and stored in appropriately named local

variables of the parser. When a </ pl ace> tag is encountered, signifying that the

end of that place has been reached, the endEl ement () handler is called and a new

Pl ace object is created using the values from these variables. The parser then

continues through the document. This method is safe as it can be guaranteed that

well-formed PNML will not start the description of another Petri net node in the

middle of another node description – for example, all the information needed to

describe a place is always contained between a <pl ace> </ pl ace> set of tags

and they are never interleaved. This method has proved successful for retrieving

complex models such as the Courier protocol as described in Chapter 6.

4.3 Reflection: Loading and Running Modules

Having described the use of XML in Medusa as a saved-file format, the

mechanism by which user-designed modules are loaded and then executed is

described. This process makes use of the Java Reflection API which provides a

mechanism by which another program can discover information about a Java

 32

cl ass which is not known until runtime. As described in [CWH01], this

information includes:

• The class of an object.

• The class’s modifiers, fields, methods, constructors, and superclasses.

• Which constants and method declarations belong to an interface.

Reflection also permits the user to manipulate classes and objects about which

nothing is known until runtime. This includes:

• The creation of an instance of a class (an object).

• Getting and setting the value of a field of the resulting object.

• Invoking a method on that object [CWH01]

Medusa uses these abilities of the Reflection API when it loads and runs

modules. As all modules must implement the Modul e interface the method which

runs the module is known to Medusa at compile-time. The name of the module’s

constructor is not known, however, so this must be discovered before an instance

of the module can be created.

Figure 4.4: The Di al og in which the user selects which module to load.

 33

The name of the module which the user wishes to load is selected, as detailed

above, through a f i l e_chooser Di al og as shown in Figure 4.4. The value

which is returned from this dialog is the name and location of the module file

which includes the r unModul e() method. It is passed as cl assName in to a

function which uses Reflection to create an instance of this class. The

implementation in Medusa limits the modules to having a no-argument

constructor, otherwise the process of loading a module would have become very

complicated indeed. This is not a problem, however, as the name of the XML

file they must parse is specified in the Modul e interface which they implement.

Any other information required to execute the model should be specified by the

programmer or inferred from the contents of the PNML description.

Once the module has been instantiated in the manner it is also run using

Reflection. The general scheme for invoking a method through Reflection,

detailed in [CWH01] is:

1) Create a Cl ass object which corresponds to the class of the object which

contains the method you wish to invoke.

2) Create a Met hod object by invoking get Met hod on the Cl ass object. The

get Met hod method has two arguments: a St r i ng containing the method

name, and an array of Cl ass objects which correspond to the parameters

of the method.

3) Invoke the method by calling i nvoke. The i nvoke method has two

arguments: an array of arguments to be passed to the invoked method and

an object which class declares or inherits the method.

The body of r unModul e() is written by the writer of the module and may call

other functions in the Module in the normal manner. Note that r unModul e() is

parameterless and as such the arrays mentioned in 2) and 3) above will be empty.

 34

The act i on_l i st ener of the “Run Module” item on the “Module” menu is

connected to a doAMet hod() method which is uses Reflection as detailed above

to execute the methods of a module. Clicking on “Run Module” , therefore,

causes r unModul e() to be called and the function to run. The Object which is

passed in when it is called is an instantiated Modul e and the method name is

r unModul e. When r unModul e() is called by this mechanism, the module

executes according to the code written in that function.

The next two chapters detail the kinds of tasks which can be performed by this

code. First of all, the graph theory analysis shows how modules can be written to

perform specific tasks themselves. The DnamacaModule, however, shows how

the extendable nature of Medusa allows it to interface with existing pieces of

software. This module also provides the opportunity to correct flaws in an

existing tool which attempts to accomplish the same thing.

 35

Chapter 5: Design and Implementation of a Module for the Analysis of

Place-Transition Nets Using Graph Theory

5.1 Introduction

The choice of modules to be implemented was chosen to demonstrate the

possibilities offered by Medusa’s extensibility. The graph theory analysis

module was chosen as a topic as it demonstrates that Medusa’s functionality

could be extended by the provision of purpose-written modules. Such a module

would allow the user to investigate exactly the attributes of the Petri net in which

he was interested. This chapter starts with an introduction to the mathematics of

graph theory. The analysis of the Petri net is accomplished through the analysis

of its reachability set. This section is included to ensure that the reader

understands the principles on which this module functions. The central

implementation issue for this module was the choice of algorithm used to check

the coverability graph for strongly connected components. A number of options

were available but it is felt that the one selected best suits the needs of this

method of analysis. In order to show that the implementation of the selected

algorithm is correct, this chapter closes by comparing a set of correct results for a

graph against those produced by the implementation.

5.2 Proper ties of Petr i Nets Which Can Be Analysed Using Graph

Theory

One way in which the properties of a Petri net are often analysed is through the

application of graph theory to their reachability sets. The term ‘ reachability set’

was defined informally in Chapter 2 as the set of all markings which are

reachable from the initial marking, though a formal definition of it is given

below. There are numerous properties of Petri nets about which one may be

interested. For Place-Transition nets, the list below compiled from [BK95]

illustrates the most common:

 36

• boundedness. A net is bounded if there is a finite limit on the

number of tokens on every place. Obviously, source (transitions

which have no input places and can thus always fire) elements

prevent a net from being both bound if it is live.

• safeness is of interest if the places in a net represent conditions,

and so it follows that the presence or absence of tokens represents

these conditions as being satisfied or not. A net is safe if there is

at most one token on each place.

• liveness concerns the firing of transitions. If a net is live then no

reachable marking exist such that a transition is never enabled

again. In the same way that sources prevent boundedness, sinks

(places which have no outgoing arcs) prevent liveness in a

bounded net.

These properties can be formalised thus:

Definition 5.1 Let PN = (P,T,I−,I+,M0) be a Place-Transition net

• The reachability set of PN is defined by R(PN) := {M | M0 Y M} .

If PN denotes an unmarked Place-Transition net of if we want to

consider parts of the reachability set, the set of reachable

markings for a given marking M Z'[�\�\^]`_,a�_�b%c(d-_�ae]gfih (PN, M) :=

{ M | M j M} . Thus for a marked Place-Transition net we have

R(PN) = R(PN, M0).

• PN is a bounded Place-Transition net, iff ∀p ∈ P : ∃k ∈ 0 : ∀M

∈ R(PN) : M(p) k k.

PN is safe, iff ∀p ∈ P : ∀M ∈ R(PN) : M(p) lnm .
• A transition t ∈ T is live, iff ∀M ∈ R(PN) : ∃M’ ∈ R(PN) : M o

M’ and M’ [t >.

• PN is live, iff all transitions are live, i.e. ∀t ∈ T, M ∈ R(PN) :

∃M’ ∈ R(PN) : M p M’ and M’ [t >.

• A marking M ∈ R(PN) is a home state, iff M’ ∈ R(PN) : M’ q
M. [BK95]

 37

A necessary condition for a net to be live and bounded is that it is strongly

connected. Otherwise a net is said to be weakly connected. Informally, it is said

that two nodes, x and y, of a net are weakly connected if and only if x can be

reached from y or y can be reached from x. The nodes are strongly connected if

and only if x can be reached from y and y can be reached from x. As a Place-

Transition net can be treated as a directed graph, this can be formalised as

follows:

Definition 5.2 Let PN = (P,T,I−,I+,M0) be a Place-Transition net

• Input places of transition t are defined as: •t := { p ∈ P | I− (p, t) >

0} ,

• Output places of transition t: t• := { p ∈ P | I+ (p, t) > 0} ,

• Input transitions of place p: •p := { t ∈ T | I+ (p, t) > 0} ,

• Output transitions of place p: p• := { t ∈ T | I− (p, t) > 0} ,

• F ⊆ (P x T) ∪ (T x P) given by F := { (x, y) | x, y ∈ P ∪ T : x ∈ •y}

is called the flow relation of PN.

Let F* denote the reflexive and transitive closure of F, i.e. x, y, z ∈

P ∪ T:

a) (x, x) ∈ F*

b) (x, y) ∈ F ⇒ (x, y) ∈ F*

c) (x, y) ∈ F* and (y, z) ∈ F* ⇒ (x, z) ∈ F*

• PN is weakly connected iff x, y ∈ P ∪ T : xF*y or yF*x,

• PN is strongly connected iff x, y ∈ P ∪ T : xF*y and yF*x.

[BK95]

5.2.1 Analysis of Place-Transition Nets Using Graph Theory

There are two common ways in which the reachability set of a Place-Transition

net can be drawn. The first is as a reachability tree, whose nodes are the

markings of the net. Figures 5.1 and 5.2 show a Place-Transition net and its

corresponding reachability tree.

 38

 p1 t1 p2

 t3 t2

 p3

Figure 5.1: A Place –Transition net.

(1,0,0)

 t1

(0,1,0)

 t2

(0,0,1)

 t3

(1,0,0)

Figure 5.2: The reachability tree of the net in Figure 5.1.

The process by which the reachability tree is constructed is described in [BK95].

The starting node is the initial marking of the net. From this, the directly

reachable markings are added as leaves and their directly reachable markings are

in turn calculated. These are then added as further leaves and so on until a

previously generated marking is encountered.

The second format is as a reachability graph. This is a direct transformation of a

reachability tree achieved by deleting duplicate nodes and connecting the

remainder up appropriately [BK95]. The reachability graph which corresponds to

the reachability tree in Figure 5.2 is shown in Figure 5.3.

 39

 t1
 (1,0,0) (0,1,0)

 t3 t2

 (0,0,1)

Figure 5.3: The reachability graph of the net in Figure 5.1.

The reachability graph of a bounded net like that shown in Figure 5.3 is relatively

straightforward to generate but problems are encountered when trying to generate

for unbounded nets as they are infinitely large. To overcome this and make the

generation of reachability graphs for unbounded nets possible, the symbol is

used to in texts such as [BK95] to represent the infinite marking on an unbounded

place. By using and Algorithm 5.1, a finite representation of the reachability

tree can be generated for both bounded and unbounded nets. This is known as a

coverability tree, and in the case of a bounded net is identical to that net’s

reachability tree [BK95].

Algor ithm 5.1 to generate the coverability tree of a Place-Transition net:

X := { M0} // M0 is the root of the coverability tree
while X r Ø do
begin

 Choose x ∈ X.
 ∀t ∈ T : x[t > do

create a new node x’ given by x[t > x’ and connect x and x’ by a
directed arc labelled with t.
Check ∀p ∈ P :

If there exists a node y on the path from M0 to x’ with y stvuNw(x�y$z|{ }Q~���tvu { }�~E�0�(��x����:�:tvu { }�~��g� �
X := { x | x is a leaf of the coverability tree generated so far, in x at least
one transition is enabled and there is no non-terminal node y with y = x }

end [BK95]

The coverability tree can then be converted into a coverability graph in the same

way as a reachability tree is converted into a reachability graph. Analysis of this

 40

coverability graph allows us to deduce the following things about the Place-

Transition net to which it belongs:

• the net is bounded if and only if no node in its coverability tree is

marked with the symbol [BK95].

• if the net is bounded, it is live if and only if all transitions appear

as a label in all final strongly connected components of the

coverability graph. A strongly connect component is final if there

are no arcs which leave that component [BK95].

• if the net is bounded, a home state exists if and only if its

coverability graph contains exactly one final strongly connected

component. It is not the case, however, that if a net is unbounded

then it cannot have a home state [BK95].

One problem with graph-theory analysis is that the coverability graphs generated

for even relatively simple nets can be very large – this is called the state space

explosion problem in [BK95]. There exists a method which addresses this

problem (invariant analysis) but it is beyond the scope of this project. A module

capable of performing invariant analysis on complex nets has been produced and

full details of it are given in Chapter 7.

5.2.2 Analysis of GSPNs Using Graph Theory

The analysis of GSPNs using the theories outlined above is rendered difficult by

the fact that such nets possess two forms of transitions. As has been said, the

firing of enabled immediate transitions has priority over that of timed transitions,

which leads to the existence of vanishing and tangible markings (see Chapter 2).

Is it impossible to generalise about the attributes of a GSPN from analysis of its

underlying Place-Transition net, except to say that if the Place-Transition net is

bounded then so to is the GSPN [BK95]. Due to these complications, the graph

theory module is designed for the analysis of Place-Transition nets only.

 41

5.3 Implementation of the Module

The first step is to construct the coverability tree as per Algorithm 5.1. The

coverability tree must then be converted into a coverability graph. Once this has

been accomplished it can be analysed. This analysis centres around the

identification of the strongly connected components of the graph, a task for which

there exist a number of common algorithms. The following section will therefore

concentrate on describing the selection of the algorithm which was adopted as

this was the key issue faced.

5.3.1 Analysis of the Coverability Graph

The coverability graph is analysed to discover if the net is bounded and live and

if the net has a home state. This section will describe how such analysis is

performed in this module. Checking to see if the net is bounded is relatively

simple. As will be recalled, the net is bounded if no marking in the coverability

graph contains the symbol . This translates rather obviously into the

pseudocode shown in Figure 5.4.

pr i vat e bool ean i sBounded() {
f or (ever y node i n t he cover abi l i t y gr aph) {

 f or (ever y pl ace i n t hat node) {
 i f (t he mar ki ng on t hat pl ace i s “ ”)
 r et ur n f al se;
 }
 }
 r et ur n t r ue;
 }

Figure 5.4: Pseudocode representation of the function for analysing if a net is

bounded.

Conducting the analysis necessary to check for the existence of the other two

conditions is more involved, however. As per the definition of the three

conditions above, this analysis is only necessary if the net is bounded. If the net

is not bounded then analysis will terminate here. Assuming the net is bounded,

the strongly connected components of the coverability graph must be identified.

 42

The coverability graph can be treated as a directed graph as defined in Definition

5.3.

Definition 5.3 a directed graph or digraph is a pair G = (V, E) where:

• V is a set whose elements are called ver tices or nodes,

• E is a set of ordered pairs of elements of V which are called edges,

directed edges or arcs,

• For an arc (v, w) in E, v is its tail and w is its head: (v, w) is

represented in diagrams as v w and is written vw. [BG00]

The classic algorithm for identifying strongly connected components in a directed

graph was designed by R. E. Tarjan:

Algor ithm 5.2 Tarjan’s algorithm to detect the strongly connected components
of a directed graph G = (V, E) [NSS94]

procedure VISIT(v);
begin
 root[v] := v; InComponent[v] := False;
 PUSH(v, stack);
 for each node w such that (v, w) ∈ E do begin
 if w is not already visited then VISIT(w);
 if not InComponent[w] then root[v] := MIN(root[v], root[w])
 end;
 if root[v] = v then
 repeat
 w := POP(stack);
 InComponent[w] := True;
 until w = v
end;

//Main program
begin
 stack := ∅;
 for each node v ∈ V do
 if v is not already visited then VISIT(v)
end.

Tarjan’s algorithm applies a recursive function VISIT to every node in the graph

which has not already had VISIT applied to it [NSS94]. The algorithm aims to

 43

find the root of every strongly connected component in the graph. The root of

each strongly connected component is defined as the first node which VISIT

enters in that component [NSS94]. To accomplish this the algorithm performs

two interleaved traversals of the graph undergoing analysis [NSS94]. The first is

a depth-first search of all edges [NSS94]. The second is accomplished using a

stack on which each node is stored when it is discovered by the first traversal

[NSS94]. When a root of a strongly connected component is found all of its

descendants which are not part of a previously identified strongly connected

component are marked as belonging to the root’s component [NSS94]. When the

root of a component is exited all the nodes down to this root are popped off the

stack and are taken as forming that component [NSS94].

There have been a number of proposed refinements of Tarjan’s algorithm, for

example two are presented in [NSS94]. These focus on improving its efficiency

by reducing the number of nodes stored on the stack during the second traversal

and thus finding the strongly connected components faster. The first of the

refined algorithms does not use the stack when exploring strongly connected

components which consist of only one node. The second is a further refinement

but is of little use in this particular application as it only stores the roots of the

components and not the nodes which make them up. This would make checking

for liveness very hard. For the purposes of this module, however, Tarjan’s

original algorithm would be sufficient as the size of the coverability graph is

constrained by the state-space explosion problem and so the improvements are

unlikely to have too great an impact.

There is also a variation on Tarjan’s algorithm by M. Sharir presented in [BG00].

This takes an array of adjacency lists as its representation of a directed graph.

Each vertex of the graph is assigned a unique integer identifier which is used as

the index in an array of adjacency lists. Each entry in the array is a linked list of

integers which records to which vertices the vertex is connected. This can

perhaps be more easily understood when presented as in Figure 5.5.

 44

Figure 5.5: A directed graph and its corresponding adjacency list representation

[BG00].

This algorithm described in [BG00] is divided into two phases. First of all, a

depth-first search of the directed graph G represented as an array of adjacency

lists is conducted and the vertices are pushed onto a stack as they are encountered

[BG00]. Once this search is completed the algorithm moves into the second

phase. The transpose graph of G, denoted GT, is employed in the second phase.

GT is formed by reversing the direction of every arc in G, which can be

accomplished from the adjacency list structure of G [BG00]. A depth-first search

of GT is then performed and from this the strongly connected components are

identified [BG00]. Once again a stack is employed to accomplish this. The

strongly connected components are identified by the index of the vertex

encountered by the algorithm in that component [BG00].

1

1

2

3

4

5

6

7

2

3 4

1 6

2 3

4 5 7

6

2

3 4

5 6 7

 45

It was decided to select the algorithm which is presented in [BG00] because of

the provision of extensive pseudocode and explanatory notes in that text. This

greatly aided implementation. The improved versions of Tarjan’s algorithm

presented in [NSS94] have much to recommend them, especially their improved

efficiency over the other methods. It is arguable, however, whether or not their

improvements would be noticeable given the limited scale of the problems which

this module, constrained as they are by state-space explosion, could be expected

to address. Furthermore, the algorithms are not expanded upon in too much

detail and so implementation would have been more time consuming.

5.3.2 Validation of the Implementation of the Chosen Algor ithm

The implementation of this algorithm can be validated against an example

provided in [BG00]. Consider the directed graph in Figure 5.6. Its strongly

connected components are (1,2,4,6), (5,7) and (3).

Figure 5.6: A directed graph with strongly connected components [BG00].

The implementation outputs the identifier of each vertex along with the first

vertex of that vertex’s strongly connected component. The result generated is:

 Ver t ex 1 i s i n t he same scc as ver t ex 2
 Ver t ex 2 i s i n t he same scc as ver t ex 2
 Ver t ex 3 i s i n t he same scc as ver t ex 3
 Ver t ex 4 i s i n t he same scc as ver t ex 2
 Ver t ex 5 i s i n t he same scc as ver t ex 5
 Ver t ex 6 i s i n t he same scc as ver t ex 2
 Ver t ex 7 i s i n t he same scc as ver t ex 5

1 4

2

6 3 5

7

 46

It can be seen, therefore, that the implementation of the algorithm correctly

identifies three strongly connected components consisting of vertices (1,2,4,6),

(5,7) and (3). In this case the first vertex of each component is 2, 5 and 3

respectively. This shows that the implementation used in the module is correct.

5.3.3 Completing the Analysis

Having settled upon the choice of the algorithm to identify which vertices belong

to which strongly connected components, these components can now be analysed

to check for liveness and the existence of home states. This requires that final

strongly connected components are identified from amongst the strongly

connected components. Recall that a final components is one which has no

outgoing arcs. The pseudocode for a function which checks if a component is

final is given in Figure 5.7. It assumes that the graph is defined in the adjacency

list structure shown in Figure 5.5.

 publ i c bool ean i sFi nal () {
 f or (ever y ver t ex i n t he component) {

i f (t he ver t ex i s connect ed t o anot her not i n
t he same component) {

/ / t hi s i s achi eved by compar i ng t he
/ / ver t i ces i n t he ver t ex ’ s adj acency l i s t
/ / wi t h t hose ver t i ces known t o be i n t hi s
/ / component

r et ur n f al se;

 }
 }
 r et ur n t r ue;
 }

Figure 5.7: Pseudocode for a function which checks if a strongly connected
component is final.

As a home state only exists if the coverability graph contains exactly one final

strongly connected component, the existence of home states can be checked for

by assessing each component using the routine in Figure 5.7 and recording how

 47

many “ true” values are returned. If the number is not one, the net with that

coverability graph does not have a home state.

For a net to be live every transition must appear as a label in every final strongly

connected component. Using the routine in Figure 5.7 the final components are

identified and analysed by the routine shown in Figure 5.8.

 publ i c bool ean i sLi ve() {
 f or (ever y f i nal st r ongl y connect ed component) {
 Li st t r ansi t i ons = new Li st () ;
 f or (ever y mar ki ng i n t he component) {

/ / r et r i eve t he t r ansi t i on whi ch f i r ed t o
/ / pr oduce t he mar ki ng – t hi s i s st or ed
/ / when t he gr aph i s const r uct ed

t r ansi t i ons. add(t r ansi t i on. name) ;

 }
 / / compar e t he l i st f or t hi s component wi t h a

/ / pr e- gener at ed l i s t of al l t r ansi t i on names

i f (t her e i s a t r ansi t i on of t he net whi ch does
not appear i n “ t r ansi t i ons”)

 r et ur n f al se;
}

 r et ur n t r ue;
 }

Figure 5.8: Pseudocode representation of the function which checks if the
coverability graph is that of a live Place-Transition net.

 48

Chapter 6: Design and Implementation of a Module to Interface With

Dnamaca

6.1 Introduction

DnamacaModule was selected as a topic to demonstrate that it is possible to

design a module to allow Medusa to interface with a pre-existing piece of

software. This also presented the opportunity to correct a flaw in another Petri

net editor (DaNAMiCS) which also produces output files in Dnamaca format, but

not in a correct manner. It was hoped to incorporate features lacking from

DaNAMiCS as well, such as a front-end which would allow the user to specify

exactly the performance measures which they wished to have analysed.

Dnamaca is a Markov chain analyser written by Dr. William Knottenbelt capable

of generating performance analysis results for GSPNs [KNO96]. The theory of

Markov analysis is not covered here as it is not essential to the understanding of

the design of DnamacaModule, but readers wishing to know more are directed to

[KNO96], [KNO99] and [BK95]. Very broadly, Markov analysis deals with the

states of a system, for example what the probability of it being in a certain state at

some time is. For Petri nets, the states of the system are the markings through

which it passes when enabled transitions are fired.

Dnamaca functions by parsing an input file containing a textual description of the

net to be analysed into its internal representation, performing the analysis on this

representation and producing an output file detailing the results. The key issue

was the design of a module which would render a Petri net produced in Medusa

into an input file to be read and processed by Dnamaca. DnamacaModule,

therefore, is responsible for automatically generating a Dnamaca input file from

the Petri net currently being edited in Medusa, allowing the user to add the

performance measures desired, running Dnamaca itself and finally presenting the

results back to the user. The process can be summarised thus:

 49

1) DnamacaModule parses the cur r ent . xml file produced by Medusa

2) From this, it automatically generates a description of the net in the model

description format of Dnamaca.

3) It then gives the user chance to add the performance measures to be

analysed. These and the model description are contained in a file called

cur r ent . mod.

4) Dnamaca is invoked by DnamacaModule with cur r ent . mod as its input

file.

5) The results produced by Dnamaca held in the cur r ent . mod. out file are

presented back to the user.

This chapter comprises three main sections. An overview of how nets are

inputted into Dnamaca is given, including details of how DaNAMiCS is flawed.

The implementation of DnamacaModule is then covered, including how this flaw

was rectified and how invoking another command line program is done in Java.

The success or otherwise of the implementation is assessed in the chapter which

follows.

6.2 Dnamaca Input Files

This section shows how a Petri net is defined in an input file for Dnamaca. An

input file contains two sections: the first half describes the structure of the net

(the model description) whilst the second details the attributes of the net which

the user wishes to have analysed (the performance measures).

6.2.1 Dnamaca Model Descr iptions

As the Markov chain which underlies a GSPN may contain a very large number

of states it would not be practical to describe each one of these individually

[KNO99]. Instead, Dnamaca employs a high-level description which specifies

the components of the system (the state description vector), the system’s initial

state and the rules by which it moves between states [KNO99]. These correspond

 50

respectively to the places which make up the net, the initial marking of these

places and a description of each transition including the conditions under which it

fires and the resulting state when it does [KNO99]. It is possible to write a

program which generates such a description automatically when given a Petri net

– indeed this is what the DaNAMiCS export function and DnamacaModule both

do. Figure 6.1 shows a simple Place-Transition net and its equivalent model

description.

 p1 t1 p2

\ model {

 \ st at evect or {
 \ t ype{ shor t } { p1, p2}
 }

 \ i ni t i al {
 p1 = 1;
 p2 = 0;
 }

 \ t r ansi t i on{ t 1} {
 \ condi t i on{ p1 > 1}
 \ act i on{
 next - >p1 = p1 – 1;
 next - >p2 = p2 + 1;
 }
 \ r at e{ 1. 0}
 }

}

Figure 6.1: A Place–Transition net and its corresponding Dnamaca model

description.

The way in which a transition is described merits some explanation. The

condi t i on describes the state which the system must be in for this transition to

be enabled. It can be seen that it corresponds to the number of tokens which must

be present on the transition’s input places to enable it. The act i on describes the

state which results from the transition firing in terms of the number of tokens

which are created and destroyed on the transition’s output and input places.

 51

It is in the action section that model descriptions generated automatically by

DaNAMiCS can exhibit flaws. Consider the net in Figure 6.2. Notice that the

arc connecting t1 and p1 is directed both ways, and that there is a token on p1 and

as such t1 is enabled. This means that t1 can always fire and when it does one

token is destroyed on the transition’s input places and one is created on each of

its output places. As p1 is both the input and output place of t1, when the

transition is fired the number of tokens on p1 does not change.

 p1 t1

Figure 6.2: A net which would be described incorrectly by DaNAMiCS.

The correct description for t1 would be:

 \ t r ansi t i on{ t 1} {
 \ condi t i on{ p1 > 1}
 \ act i on{

}
 \ r at e{ 1. 0}
 }

Notice that the action description is empty. This is because it describes the state

which the system will be in after the transition fires, and as has been shown

above the firing of t1 leaves the system’s state unchanged. If the net is entered

into DaNAMiCS and then exported as a Dnamaca model description, the

following is produced:

 \ t r ansi t i on{ t 1} {
 \ condi t i on{ p1 > 1}
 \ act i on{
 next - >p1 = p1 – 1;
 next - >p1 = p1 + 1;

}
 \ r at e{ 1. 0}
 }

This appears to be correct as it describes what occurs: a token is destroyed on p1

and then another is created there. Dnamaca, however, deals with the state which

results from the firing of a transition and so expects a place to feature at most

 52

once in the action description. When it parses a description with a repeated place

it only takes in the final one. This means that if Dnamaca was given the

description above it would interpret it as meaning that the firing of t1 increases

the number of tokens on p1 by one each time.

It is not hard to see how such an error could occur. In most cases, considering the

effects of firing a transition on first its input and then its output places would give

correct results. To ensure that the results are always valid, however, any attempt

to generate a model description automatically must deal with the overall effect of

firing a transition on the state of the system (that is to say, the markings on the

places). An approach which achieves this, and thus avoids replicating the

mistake of DaNAMiCS, has been implemented in DnamacaModule and is

detailed below.

6.2.2 Dnamaca Performance Measures

Unlike Dnamaca model descriptions, which can be generated automatically from

a representation of a Petri net, the performance measure part of the input file must

be supplied by the user. Performance measures are either state measures or count

measures. State measures are used to indicate to the performance analyser the

real expressions for which the user wishes to have results generated. This

includes measures such as the average number of tokens on a place [KNO99].

They are described in the form:

 \ st at emeasur e{ <i dent i f i er >} {
\ est i mat or { <any combi nat i on of “ mean” , “ var i ance” ,

“ st ddev” and “ devi at i on” >}
 \ expr essi on{ <expr essi on t o be anal ysed>}
 }

Count measures are used to indicate in which rates of event occurrence the user is

interested, for example the rate at which a transition fires and produces

throughput [KNO99]. They are expressed thus:

 53

 \ count measur e{ <i dent i f i er >} {
 \ est i mat or { mean}
 \ pr econdi t i on{ <a bool ean expr essi on>}
 \ post condi t i on{ <a bool ean expr essi on>}
 \ t r ansi t i on{ <ei t her “ al l ” or a l i st of t hose

r equi r ed>}
 }

It is the responsibility of the user to specify those which they desire. In

DaNAMiCS this is not possible as the whole Dnamaca input file is generated

automatically with a set of default performance measures. DnamacaModule,

however, incorporates a mechanism which allows the user to specify the

measures which they wish to have analysed through a series a GUIs. This system

is detailed below.

6.3 DnamacaModule

Because performance measures are supplied by the user, they are not hard to

accommodate. The automatic generation of a correct model description is a far

more involved process and it is on this that the bulk of this section will focus.

DnamacaModule is much more than a textual generator as it not only creates the

correct input file but also runs Dnamaca with this file and presents the user with

the results produced. How this invocation of another program is achieved is

detailed below.

The first thing which DnamacaModule must do is parse the cur r ent . xml input

file. It accomplishes this by using the same SAX2 parser method as Medusa does

to load saved nets. DnamacaModule’s internal representation of a net is identical

to Medusa’s (see Figure 3.1). Medusa’s class structure was repeated as it could

easily be applied to the task of generating Dnamaca input files, but functions such

as those responsible for drawing the Petri net were unnecessary and were

consequently deleted.

 54

6.3.1 Model Descr iption Generation

DnamacaModule utilises the incidence matrices of the net which is to be analysed

to generate the model descriptions. These matrices are also used in invariant

analysis as described in [BK95]. There are three of these matrices: the backward

incidence matrix (C-), the forward incidence matrix (C+) and the incidence matrix

(C). The matrices C- and C+ describe the incidence functions I- and I+ in matrix

form. C- describes the number of tokens which are destroyed on each place for

each transition, whilst C+ describes the number of tokens which are created

[BK95]. For the Petri net in Figure 6.1, the corresponding matrices would be:

C- = 1 C+ = 0

 0 1

The incidence matrix C is the combination of C- and C+. To be formal [BK95]:

C = C+ - C-

For example, the C matrix for the net in 6.1 would be:

C = -1

+1

The columns of the C matrix therefore describe the cumulative effect on the

markings of all places created by the firing of a transition and it is this which

DnamacaModule exploits. It will be recalled that the problem with the existing

implementation in DaNAMiCS is that it considers first the input places and then

the output places, which can lead to incorrect results with bi-directed arcs. It has

already been said that the way to overcome this was to consider the overall effect

of firing a transition when it is described, and the use of the C matrix permits this.

This can be seen if the matrices for the net in Figure 6.2 are considered:

C- = 1 C+ = 1 C = 0

 55

The value of the corresponding C matrix reflects the fact that the cumulative

effect of t1 firing is to leave the marking of p1 unchanged – the number of tokens

changes by 0.

The C matrix, therefore, provides an ideal mechanism for describing the overall

effect of firing a transition and thus ensuring that bi-directed arcs are described

correctly. In order to exploit this, DnamacaModule first calculates the C- and C+

matrices and then subtract one from the other to find C. All three matrices are

represented as two-dimensional matrices in DnamacaModule’s Java code. They

are declared as:

i nt [] [] C = new i nt [i] [j]

where i is the number of places in the system and j is the total a number of

transitions (immediate and timed). The relevant matrix is then passed into a

routine which assigns the values based on the structure of the Petri net. Figure

6.3 shows the pseudo-code version of the function which calculates the C- matrix,

but the routine which assigns C+ is identical save for the fact that it uses output

places not input places.

pr i vat e voi d cal cC- (i nt [] [] C-) {

f or (ever y t r ansi t i on tj) {
 f or (ever y pl ace pi) {

i f (pi i s an i nput pl ace of tj) {
C- [i] [j] = wei ght of ar c f r om pi t o

tj ;
 }

el se {
C- [i] [j] = 0;

 }
 }
 }
 }

Figure 6.3: The pseudocode of the function which calculates the C- matrix

The calculation of C is then achieved by matrix subtraction. A pseudocode

representation of DnamacaModule’s code is shown in Figure 6.4.

 56

pr i vat e voi d cal cC(i nt [] [] C, i nt [] [] C+, i nt [] [] C-) {
f or (ever y pl ace pi) {

 f or (ever y t r ansi t i on tj) {
 C[i] [j] = C+[i] [j] - C- [i] [j] ;
 }
 }
 }

Figure 6.4: The pseudocode representation of the algorithm for calculating the C

matrix.

Once C has been calculated it can be used directly in the creation of the Dnamaca

input file. When describing transition tj, a “next->pi” line is only written out if

the value of (pi, tj) in C, which corresponds to the (i th, j th) element, is not equal to

zero. Otherwise, the firing of transition tj does not affect the marking of pi and so

nothing needs to be described. The pseudocode representation of the Java code

for implementing this is shown in Figure 6.5.

 f or (ever y t r ansi t i on tj) {

f or (ever y pl ace pi) {
 i f (C[i] [j] >0) {

wr i t e(“ next - >pi = pi +” C[i] [j]) ;
}

 el se i f (C[i] [j] <0) {
wr i t e(“ next - >pi = pi –“ abs(C[i] [j])) ;

 }
}

 }

Figure 6.5: The pseudocode representation of the way in which DnamacaModule

writes transition definitions.

Note that the abs expression in the el se i f statement is necessary to return the

absolute value of C[i][j] as it will have a negative value and subtracting a

negative number has the same effect as addition.

 57

6.3.2 Performance Measures

Once the model description has been generated, DnamacaModule must collect

the performance measures from the user. This process is achieved through a

number of Swing Di al ogs with fields corresponding to the elements which make

up the measures (see Section 6.2.2). Figure 6.6 shows the form which these

Di al ogs take.

Figure 6.6 Screenshot of the Di al ogs through which the user inputs the desired
performance measures.

The fields in which the expressions are specified by the user are JText Fi el ds,

the contents of which can be retrieved as a St r i ng and written to a file. When

the OK button is clicked on the Dnamaca Fr ont - End, the model description and

any performance measures are written to a Dnamaca input file called

cur r ent . mod.

 58

6.3.3 How DnamacaModule Invokes Dnamaca and Displays Results

When the model description has been generated and the performance measures

specified, DnamacaModule automatically runs Dnamaca with the completed

input file. It is worth explaining how this is accomplished. Dnamaca is a

command-line program which is invoked with:

dnamaca <i nput f i l ename>

Java offers a ready-made mechanism through which programs can invoke

command-line applications, the intricacies of which are explained fully in

[DAC00]. In order to run Dnamaca from DnamacaModule it is necessary first to

retrieve the existing Java Runtime Environment as reference to a Runt i me object

[DAC00]. It is then possible to use the Runt i me. exec(St r i ng) method to run

Dnamaca where the command shown above is passed in as the St r i ng variable

[DAC00]. As the file produced by DnamacaModule is always called

cur r ent . mod this is a straightforward matter.

As [DAC00] explains, however, there are a number of pit-falls to this apparently

simple procedure. Most importantly, the output streams produced by the program

being invoked by Runt i me. exec() must be handled and the invoked process’s

return value passed back to the invoking program or else the invoking program

will hang. The invoked program will generate two output streams: one on the

standard output stream for its results and one on the standard error stream if any

problems occur. The output streams of the invoked program are treated as input

streams by the invoker and so they must be redirected to the correct output

streams again by the invoking program [DAC00].

DnamacaModule handles the Dnamaca’s standard output stream first and only

handles the error stream when Dnamaca stops writing to the standard stream.

This is one of the methods described in [DAC00], but [DAC00] also details how

threads can be used to read both output streams concurrently. This solution has

much to commend it in terms of elegance but it was felt that the extra complexity

which was involved, especially the introduction of threads into a program with a

 59

Swing GUI (which is by definition not thread-safe [CWH01]), was greater than

the possible benefits. The solution adopted handles all the output generated by

Dnamaca in the correct way as the error stream is only written to when an error

occurs, in which case no more writing to the standard output stream takes place.

The final task which DnamacaModule must perform is the presentation of the

generated results back to the user. Dnamaca writes the results both to the screen

and to a file. This file’s name is always of the form <i nput f i l ename>. mod. out ,

so the results from an execution of DnamacaModule are always to be found in

cur r ent . mod. out . In order to display them to the user this file is read and

displayed in a Swing Di al og as shown in Figure 6.7.

Figure 6.7: A screenshot showing how DnamacaModule presents the results
generated by Dnamaca to the user

Having detailed the production of two modules a consideration of how successful

the project has been must be undertaken. For DnamacaModule, this means

assessing how accurate the model description which it generates are. This

process will also assess Medusa’s architecture because the model descriptions

produced by DnamacaModule depend entirely on the description of the Petri net

entered into Medusa. Ultimately, the aim of this validation process is to

 60

demonstrate whether or not the main aim of the production of an extensible editor

has been achieved. This is the topic of the following chapter.

 61

Chapter 7: Validation of Concept and Design Through Analysis of

Generated Results

7.1 Introduction

The aim of this chapter is to attempt to validate the design of Medusa and the

modules. This will be achieved by using the modules to analyse models with

documented results and comparing the results produced. If the results match then

it can be concluded that the implementations are correct, whilst if they differ the

implementations are flawed. This process will also evaluate how successful this

project has been in achieving its aim of producing an extendable tool.

A module designed as part of [MW01] will be used in this process. This module

was designed to be compatible with Medusa as it implements the same interface

and takes PNML as an input file. It should, therefore, be able to be loaded and

run by Medusa without problems and generate correct results. If this proves to be

the case it can be concluded that the project has achieved its aim and that it is

possible to extend Medusa knowing only the details of how it interfaces with its

modules.

7.2 Graph Theory Analysis Module

The models chosen to validate this module were taken from [BK95]. The first to

be tried was the simple net shown in Figure 7.2 with the corresponding

reachability graph shown in Figure 7.3. The module calculated the reachability

graph and from this identified that the net was bounded as no marking contained

the symbol. Furthermore, the strongly connected component algorithm

detected that there was only one such component and that this was final. This

meant that the net had a home state. The net was correctly described as live as

every transition appears as a label in that component. Figure 7.4 shows a

screenshot of the module returning these results.

 62

 t1 p2 t3

 p1

 t2 p3 t4

Figure 7.2: A Place-Transition net [BK95].

 (1,0,0)
 t3 t4
 t1 t2

 (0,1,0) (0,0,1)

Figure 7.3: The reachability graph of the Place-Transition net in Figure 7.2

[BK95].

Figure 7.4: Screenshot of Medusa analysing the net in Figure 7.2 with the graph

theory module.

 63

The module also described correctly the complex unbounded net shown in Figure

7.5. In this case as the net is unbounded the module does not attempt to check for

liveness or the existence of a home state. It does, however, construct the

reachability graph and recognise that the net is unbounded from this. Again,

Figure 7.6 shows a screenshot of Medusa and the results returned by the module.

 t4

 t2 p2

 p1 t3

 p3

 t1 t5

 p4

Figure 7.5: A complex, unbounded Place-Transition net [BK95].

 64

Figure 7.6: Screenshot of Medusa analysing the net in Figure 7.5 with the graph

theory module.

7.3 DnamacaModule

It was decided to use the GSPN model of the Courier communications protocol

shown in Figure 7.1 to validate DnamacaModule as it is a complex model which

contains a bi-directed arc. DnamacaModule was designed specifically to describe

these correctly as DaNAMiCS cannot. There are also a set of performance

results readily available to which those generated by DnamacaModule can be

compared. If the results are the same it can be concluded that DnamacaModule

generates valid model descriptions and also that Medusa is capable of editing

complex nets successfully.

The Courier model was entered into Medusa from the diagram reproduced in

Figure 7.1. DnamacaModule was then loaded and run with the necessary

performance measures entered through its GUI.

 65

n

courier1

network
delay

sender
application

task

sender
session

task

sender
transport

task

receiver
application

task

receiver
session

task

receiver
transport

task

m

p2

t2

p4p3

p5

p6

p8

t5

p10 p9

p11

p13p12

p16p15

p14

p17

p20 p18 p19

t14t13

p22p21t15

p23

p24 p25

p26

p27 p28 p29

t23 t24

p31p30

p32

t22

p33 p34

t27

p35

p36 p37

t29

p38 p39

p40

p41

p42

t32

p44p43

p45 p46p1

courier3courier2

courier4

network delay

t1 (r7)

t3 (r1)

t4 (r2)

t6 (r1)

t7 (r8)

t12 (r3)

t8 (q1) t9 (q2)

t11 (r5)t10 (r5)

t18 (r4)

t16 (r6) t17 (r6)

t34 (r10)

t33 (r1)

t31 (r2)

t30 (r1)

t28 (r9)

t25 (r5) t26 (r5)

t19 (r3) t20 (r4) t21 (r4)

Figure 7.1 Diagram of the GSPN model of the Courier protocol [KNO99].

The performance measures used are identical to those in [KNO99]. The data
�<�����
���:���������g������� ���(�$�<���������:���Q���(���+�E���U ���¡i¢

y the throughput of t21. The Pxxxx

measures determine task utilisation, for example Ptransp1 is the probability that p12

 66

is marked. Similarly, Ptransp1 is defined for p32, Psess1 and Psess2 for p6 and p41, and

Psend and Precv for p1 and p46 [KNO96].

The results generated by DnamacaModule are reproduced in Table 7.1 along with

the published results from [KNO99]. The variable m (the marking on p17) was

fixed at 1 to conform with that used to generate the known results, whilst n (the

marking on p14) was tried at 1 and 2. Unfortunately, although the published

results cover the range 1 £ n ¤¦¥(§�¨+©�ªe«�¬
­,®�¯�ª�°²±U¨+³´¬�µ�¨<©�ª¶­�¬Q·(ª�¯H®�¸�ª�¹Qª�º�¨�ª�·C¨<©�ª
generation of results for n > 2 by Dnamaca.

As can be seen, the results generated from DnamacaModule are in complete

agreement with the published results. From this it can be concluded that it is

possible to edit complex nets using Medusa and that DnamacaModule generates

correct model definitions from nets entered in Medusa even if that net contains

bi-directed arcs.

 n = 1 n = 2 n = 1 n = 2
 74.3467 120.372 74.3467 120.372

Psend 0.01011 0.01637 Psend 0.01011 0.01637
Precv 0.98141 0.96991 Precv 0.98141 0.96991
Psess1 0.00848 0.01372 Psess1 0.00848 0.01372
Psess2 0.92610 0.88029 Psess2 0.92610 0.88029
Ptransp1 0.78558 0.65285 Ptransp1 0.78558 0.65285
Ptransp2 0.78871 0.65790 Ptransp2 0.78871 0.65790

Table 7.1: Published results (left) and those generated from the model description
produced by DnamacaModule (right).1

7.4 Running a User-Designed Module

The aim of this project was to produce an editor which could be extended by the

user without access to its source-code. In order truly to validate the success of

the implementation, therefore, it is necessary to test if this has been achieved. A

1 Results from C.M. Woodside and Y. Li., ‘Performance Petri net analysis of communication
protocol software by delay-equivalent aggregation’ in Proceedings of the 4th International
Workshop on Petri nets and Performance Models (Melbourne, Australia: IEEE Computer Society
Press, 2nd-5th December 1999,) pp. 64-73, reproduced in [KNO99].

 67

suitable module was produced as part of another MSc Computing Science project

[MW01]. It had been agreed prior to the beginning of the projects that they

should implement the same interface so that modules could be swapped between

them in order to validate the concept of both. Other than this there was no

discussion as to the internal designs of either the tools or the modules which both

projects produced. This replicates the constraints under which modules would be

produced in the real world – the user would not be intimately familiar with the

internal works of Medusa in the way that its author is.

The module designed as part of [MW01] is capable of performing invariant

analysis on a Petri net. Invariant analysis can be used for solving problems such

as the Reader-Writer problem presented in [BK95]. Consider the Place-

Transition net in Figure 7.6. This represents a system with several processes

reading and writing a shared file. Readers never modify the file and so more than

one may access it at the same time. Writers, however, do modify the file and so

when they access it all other readers and writers must not be allowed to access the

file. The synchronisation required could be achieved by a semaphore. A possible

solution may be to initialise the semaphore with a value of n and every time a

reader wanted access it would decrement it by 1 and then increment it by 1 when

it finished. A writer, however, would decrement and increment the semaphore by

n. Invariant analysis can be used to prove whether or not this solution is correct.

 p1 p4

 t1 t3

 n

 p2 p5

 p3 n

 t2 t4

Figure 7.6: Petri net representation of the Reader-Writer problem [BK95].

s

t

 n

 68

In Figure 7.6, the number of tokens on p1 and p2 represent the number of readers

which are not reading and reading respectively. Similarly, p4 and p5 model the

same conditions for the writers whilst p3 represents the semaphore. The results of

the invariant analysis published in [BK95] give the following P-invariants for the

markings on the various places. Recall that M(pi) is the marking on place pi and

that an invariant is something which holds true for all possible states of the

system.

 M(p1) + M(p2) = s

 M(p4) + M(p5) = t

 M(p2) + M(p3) + nM(p5) = n, ∀M ∈ R(PN)

This means that the sum of the markings on p1 and p2 is always equal to s no

matter which state the system is in. This means that the total number of readers is

constant. Similarly, the total number of writers is always t [BK95]. The third

equation can be solved to yield the following:

a) M(p2) »½¼ ⇒ M(p5) = 0

b) M(p5) ¾½¿ ⇒ M(p2) = 0

c) M(p5) À½Á Â0ÃHÄ'Å²Æ:Ç

These show that if a reader is reading, no writer is writing and if a writer is

writing no reader is reading (a) and b) respectively) [BK95]. It also demonstrates

that there is at most one writer writing (c)) [BK95]. From this it can be

concluded that the solution adopted is correct.

The screenshot in Figure 7.7 shows the results of performing this invariant

analysis on the Reader-Writer problem where s = 3, t = 2 and n =2. The

equations which are produced (displayed in the lower left-hand box) are as

follows:

 M(p1) + M(p2) = 3

 M(p2) + M(p3) + 2M(p5) = 2

 M(p4) + M(p5) = 2

 69

These are in exact accordance with the published results for the net.

Furthermore, the module correctly identifies the net as being bound. In order to

verify that this one result is not an anomaly, the procedure of running the module

with Medusa was repeated a number of times and the values of s, t and n were

varied. For s = 1, t = 1 and n = 1:

 M(p1) + M(p2) = 1

 M(p2) + M(p3) + 1M(p5) = 1

 M(p4) + M(p5) = 1

Likewise for s = 2, t = 2 and n = 2:

 M(p1) + M(p2) = 2

 M(p2) + M(p3) + 2M(p5) = 2

 M(p4) + M(p5) = 2

And finally for s = 3, t = 3 and n 3:

 M(p1) + M(p2) = 3

 M(p2) + M(p3) + 3M(p5) = 3

 M(p4) + M(p5) = 3

In all cases these correspond to the published values for this problem.

 70

Figure 7.7: A screenshot showing Medusa running the Invariant Analysis Module
on the Reader-Writer problem.

7.5 Conclusion

The results generated by the combination of Medusa and the three modules used

all comply with known results. From this a number of things can be concluded.

Firstly, this shows that the specific implementations of each module are correct.

Secondly, Medusa is capable of being used to edit complex GSPNs like the

Courier model successfully and the representation which it produces is sound. If

this was not the case then errors would be expected in the results produced. As

the modules have successfully generated results when used with other editors

then, if errors had occurred, Medusa would have been at fault.

More broadly, however, the success of operating all three modules with Medusa

shows that this project has succeeded in its aim of producing an extensible Petri

 71

net tool. Particularly gratifying is the success of the invariant analysis tool as this

was designed with knowledge of only PNML and the Modul e interface. That it

functioned correctly when run by Medusa shows that it is possible to design

modules for the tool when only the way in which it interfaces with these modules

is known. This was what the project set out to achieve.

 72

Chapter 8: Conclusion

8.1 Conclusions

This report has covered the production of an extensible Petri net editor/animator

called Medusa. The aim of this project was to improve upon existing Petri net

tools by creating a piece of software whose functionality could be extended

through the addition of modules by users. It was hoped that this could be

achieved even if the user was given only the specifications of the Modul e

interface and details of the XML format used to describe saved nets.

Furthermore, the design of a new Petri net tool created the opportunity to

incorporate new features which are not present in other tools as well as to correct

known mistakes in other implementations.

The architecture of Medusa has been described. The animator incorporates a

novel feature in its ability to perform backwards animation, which allows the user

to step backwards through the sequence of fired transitions. This feature is not

present in the animators of existing tools like DaNAMiCS.

Medusa is capable of loading nets designed in other tools and also saving nets in

a format which can be read by other tools. This is achieved through the use of

the Petri Net Markup Language, an XML-based language which is being

developed as a proposed standard for the description of Petri nets by software

tools. The fact that it is a standard and not a proprietary format promotes the

extensibility of Medusa by allowing it to be used in conjunction with other tools

which support PNML.

The results from the three modules described in this report validate the design of

Medusa and of the respective modules. The results obtained from

DnamacaModule’s analysis of the Courier protocol are particularly pleasing.

Courier is a very complicated model with forty-five places and thirty-four

transitions but Medusa proved capable of being used to create correctly such a

model. DnamacaModule successfully converted this model into a representation

 73

which could be analysed by Dnamaca even though the model contained a bi-

directed arc. This shows that the flaw exhibited by DaNAMiCS when attempting

to describe such arcs has been avoided in this implementation. The performance

results for the Courier protocol obtained from an execution of DnamacaModule

correspond exactly to the published figures. This demonstrates how Medusa can

interface successfully with existing tools through specially designed modules.

The results from the graph theory analysis module show that it is possible to

write a self-contained module capable of performing complex analysis on nets

created with Medusa. Once again, the results for the problems analysed were the

same as those which had been published. This validates the implementation of

the mathematical theories used in this module. It also demonstrates that the

implementation of Medusa is sound.

The final proof of the success of Medusa as an extensible piece of software came

when a module designed by another party was successfully loaded and run. This

showed that the main aim of this project has been achieved: namely that Medusa

should be capable of running modules designed by users with no knowledge of

Medusa’s internal architecture. The only information shared between the two

projects was details of the XML and Reflection interface.

8.2 Oppor tunities for Future Work

Thanks to Medusa’s extensibility, the scope for future work is enormous as any

number of modules could be written to perform various functions. There are,

however, certain additions which could be made to the Medusa editor/animator in

order to increase the functionality which it offers.

There are a number of other Petri net formalisms which could be added to

Medusa, for example Coloured Petri Nets. It will be recalled that they offer no

extra expressive power over the two types of net currently used in Medusa but

they can reduce the complexity of large nets. Similarly, a version of Medusa

which was capable of representing Queuing Petri Nets would be a valuable

 74

extension. To achieve either of these, however, would require a major rewrite of

the source-code of Medusa as it could not be achieved through a module.

Medusa could also be extended to support subnets. Like Coloured Petri Nets,

subnets add no expressive power but they do simplify the graphical

representation of the net. This is achieved by replacing sections of the net with

“black boxes” which are themselves Petri nets but whose internal workings are

not visible to the user. An implementation which allowed subnets to be imported

from various files into a single Petri net would be particularly useful.

Medusa’s animator could also be improved upon. The basic functionality of

forwards and backwards animation is sound but some form of automatic

animation could be added. This could allow the user to enter a sequence of

transitions which they wished to see fired and then have the animator display that

sequence. An even greater bonus would be if the animator could be connected to

the extension mechanism in some way so that results from the execution of a

module could be displayed. This would be particularly effective if the module

was one which identified a sequence of transitions which lead to deadlock as the

analyser could then display that trace in graphical form.

 75

Appendix A: Medusa User Guide

1 Unzip the medusa. z i p archive. This will create a folder labelled medusa

containing everything necessary to run Medusa.

2 Go into the medusa directory. To run Medusa in Windows, type

medusa. bat in a command prompt or double-click on the medusa. bat

file. To run Medusa in Linux, type . / medusa. ksh in a console window.

3 Medusa will start, displaying a window like this:

 76

4 What do the buttons do?

 = Add a place

 = Add an immediate transition

 = Add a timed transition

 = Add an arc

 = Add a token to a place

 = Remove a token from a place

 = Rotate a transition

 = Delete an element of the Petri net

 = Move an element

 = Edit an element’s attributes

 = Start animating

 = Step back one firing

 = Stop animating

5 To add a place, click on the appropriate button. Then click on the

location where you wish to place it. Transitions can be added in the same

way. To add an arc, click and hold on the node you wish it to start from

and release over the node where you wish it to end. This is also the

mechanism used to move an element.

a

b

c

d

e

f

g

h

i

j
0

k

l

n

a

b

c

d

e

f

g

h

j
0

i

k

l

n

 77

6 Tokens can be added and removed from a place by pressing the

appropriate button and then clicking repeatedly on a place until the correct

number appears.

7 To edit the attributes of a place, first click the “Edit an element’s

attributes” button. Then click over the element you wish to modify. A

box will be displayed showing that element’s attributes and this allows

you to change them using the keyboard. An example is shown below.

8 To begin animating, click on the “Start animator” button. Transitions

eligible to be fired will be highlighted in red. When one is clicked on, it

will fire and the marking on the net will change accordingly. To undo a

firing, click the “Step back one firing” button (black triangle). To stop

animating and restore the initial marking, click the “Stop animator” button

(black square).

 78

9 To save the net, select “Save as XML” from the “File” menu. A dialog

will be displayed allowing you to select the name and location of the

saved file:

10 To open a saved file, select “Open XML File” from the “File” menu.

Again, a dialog will open allowing you to select the file to load.

11 To show or remove the grid, select “Toggle Grid” from the “Edit” menu.

To enable/disable the automatic snapping of elements to the grid, select

“Toggle Snap to Grid” from the “Edit” menu.

12 To load a module, select “Load Module” from the “Module” menu. A

dialog will open as when opening a saved net. Select the module from

this. To then run it, select “Run” from the “Module” menu. The module

will then execute and prompt for any further input.

13 To remove a previously loaded module select “Remove” from the

“Module” menu.

 79

Bibliography

[BG00] Sara Baase and Allen Van Gelder, Computer Algorithms –

Introduction to Design and Analysis, 3rd Edition (Reading, Mass.:

Addison-Wesley, 2000)

[BKK94] Falko Bause, Peter Kemper and Pieter Kritzinger, Abstract Petri

Net Notation in ‘Forschungsbericht Nr. 563 des Fachbereichs

Informatik der Universität Dortmund’ (University of Dortmund,

Germany, 1994) from

http://ls4-www.informatik.uni-dortmund.de/QPN/APNN_article/

PNN.ps

[BK95] Falko Bause and Pieter S, Kritzinger, Stochastic Petri Nets – An

Introduction to the Theory (Braunschweig/Wiesbaden, Germany:

Advanced Studies in Computer Science, Friedr. Vieweg & Sohn

Verlag, 1995)

[CWH01] Mary Campione, Kathy Walrath, Alison Huml, The Java(TM)

Tutorial: A Short Course on the Basics (The Java(TM) Series)

(Palo Alto, CA: Sun Microsystems Inc., 2001) available on-line at

http://java.sun.com/docs/books/tutorial/

[DAC00] Michael C. Daconta, When Runtime.exe() won’ t, from

http://www.javaworld.com/javaworld/jw-12-2000/

jw1229traps.html

[DAN] DaNAMiCS Homepage: http://www.cs.uct.ac.za/Research/DNA/

DaNAMiCS/

[ERH99] Elliotte Rusty Harold, XML Bible (Foster City, CA: IDG Books

Worldwide Inc, 1999)

 80

[JAXB] The Javatm Architecture for XML Binding (JAXB) User Guide

Early Access Draft (Palo Alto, CA: Sun Microsystems Inc., May

2001) from http://java.sun.com/xml/ jaxb/index.html

[JAXP] The Javatm APIs for XML Processing Version 1.1 Documentation

from http://java.sun.com/xml/xml_jaxp.html

[JDC] The Java Developer Connectiontm Tech Tips, June 27th 2000, from

http://developer.java.sun.com/developer/TechTips/2000/tt0627.ht

ml

[JXML] Javatm Technology and XML, from http://java.sun.com/xml

[JKW06/00] Mathias Jüngel, Ekkart Kindler and Michael Weber, Towards a

Generic Interchange Format for Petri Nets, presented the

‘Meeting on XML/SGML based Interchange Formats for Petri

Nets’ at the 21st International Conference on the Application and

Theory of Petri Nets, Aarhus, Denmark June 26th-30th 2000. From

http://www.daimi.au.dk/pn2000/Interchange/position.html.

[JKW08/00] Mathias Jüngel, Ekkart Kindler and Michael Weber, The Petri Net

Markup Language (Humboldt-Universität zu Berlin, 31st August

2000) submitted to the Algorithmen und Werkzeuge für Petri-

Netze (Algorithms and Tools for Petri Nets) Workshop, Koblenz,

Germany, October 2000, from

http://www.informatik.hu-berlin.de/top/pnml/ index.html

[KNO96] William J. Knottenbelt, Generalised Markovian Analysis of Timed

Transition Systems (Unpublished MSc thesis, University of Cape

Town, 1996)

[KNO99] William J. Knottenbelt, Parallel Performance Analysis of Large

Markov Models (Unpublished PhD thesis, Imperial College,

University of London, 1999)

 81

[KW00] Olaf Kummer and Frank Wienberg, The XML File Format of

Renew (University of Hamburg) presented at the ‘Meeting on

XML/SGML based Interchange Formats for Petri Nets’ at the 21st

International Conference on Application and Theory of Petri Nets,

Aarhus, Denmark, June 26-30, 2000 from

http://www.daimi.au.dk/pn2000 /Interchange/detailed.html

[LM00] Regnar Bang LyngsØ and Thomas Mailund, Textual Interchange

Format for High-Level Petri Nets (University of Aarhus)

presented at the ‘Meeting on XML/SGML based Interchange

Formats for Petri Nets’ at the 21st International Conference on

Application and Theory of Petri Nets, Aarhus, Denmark, June 26-

30, 2000 from

http://www.daimi.au.dk/pn2000/Interchange/detailed.html

[MW01] Mark Wass, Predator - A Hierarchical Petri Net Editor

(Unpublished MSc thesis, Imperial College, University of London,

2001)

[NSS94] Esko Nuutila and Eljas Soisalon-Sohininen, On Finding the

Strongly Connected Components in a Directed Graph (Helsinki:

Laboratory of Information Processing Science, Helsinki

University of Technology, 1994) from

http://citeseer.nj.nec.com/cache/papers2/cs/549/http:zSzzSzwww.c

s.hut.fizSz~enuzSzpszSzipl-scc.pdf/ nuutila94finding.pdf

[PNK] The Petri Net Kernel Homepage: http://www.informatik.hu-

berlin.de/top/pnk/ index.html

[PNML] The Petri Net Markup Language Homepage:

http://www.informatik.hu-berlin.de/top/ pnml/index.html

[REN] The Renew Homepage: http://www.renew.de/

