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Abstract 
 
 
Petri nets are a widely used formalism for the analysis of concurrent systems and 

as such there are a plethora of existing tools which allow users to edit, animate 

and analyse a range of Petri net classes.  These tools are essentially limited, 

however, to the functionality incorporated into them when they are written.  The 

main aim of the project was therefore to produce a basic Petri net editor/animator 

tool which could be arbitrarily extended by the user.  This was achieved by 

designing an architecture which would allow the program to load user-designed 

modules about which nothing is known until runtime.   The project also provided 

an opportunity to design a tool which offered new features not present in existing 

pieces of software and which also corrected known flaws in these tools.  In 

particular, the animator designed as part of Medusa incorporates a novel 

backwards animator which allows the user to step backwards through the 

sequence of transitions which they have fired.    

 

Two modules were produced as part of the project.  The first of these was 

designed to use graph theory to analyse Place-Transition nets for properties such 

as liveness and boundedness.  The second allowed Medusa to interface with an 

existing Markov chain analyser called Dnamaca.  This permitted Medusa to be 

used to perform performance analysis on Petri nets.  The implementations of 

these modules and of the Medusa tool were validated against a set of known 

results. 

 

Results were also produced from an invariant analysis module designed by a 

third-party.  This was intended to demonstrate that the aim of designing an 

extensible tool with a set interface had been achieved successfully.  From this it 

would be possible to conclude whether or not other parties could design and 

implement their own modules which would work correctly. 
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Chapter  1: Introduction 

 
 

1.1  Motivation 

 

Petri nets are a widely used formalism for the analysis of concurrent systems and 

as such there are a plethora of existing tools which allow users to edit, animate 

and analyse a range of Petri net classes.  These tools are essentially limited, 

however, to the functionality incorporated into them when they are written.  It is 

impossible, therefore, for the user to use the program to perform some function 

not supported by it (for example a certain type of analysis) unless they have 

access to the source code.  Even if they do have such access there is no guarantee 

that they will be able to understand and modify it to suit their needs. 

 

Medusa was conceived to address this problem.  The main aim of the project was 

therefore to produce a basic Petri net editor/animator tool which could be 

arbitrarily extended by the user without access to its source code.  This would 

enable users to investigate the properties in which they are interested.  This will 

be achieved by designing an architecture which will allow the program to load 

user-designed modules about which nothing is known until runtime.  As Java 

provides a mechanism suitable for this, the tool was conceived from the 

beginning as being programmed in this language.   The project also provided an 

opportunity to design a tool which offered new features not present in existing 

pieces of software and which also corrected known flaws of these tools.  In 

particular, the animator designed as part of Medusa incorporates a novel 

backwards animator which allows the user to step backwards through the 

sequence of transitions which they have fired.  Such a feature is not found in the 

tools currently available. 

 

This project aims to produce two modules which will be used to validate the 

finished editor.  The first module will use graph theory to analyse Petri nets.  If 

this is successful it will demonstrate that it is possible to extend Medusa’s 

functionality through purpose-designed analytical modules.  The second module 

will allow Medusa to interface with Dnamaca, a Markov chain analyser.  If this 
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module is successful it will show how the extensibility of Medusa allows it to 

make use of the analytical tools of existing applications. 

 

In addition, Medusa will be tested with a module designed as part of another MSc 

project (see [MW01]).  The design of this module has proceeded independently 

from Medusa except that details of the interface mechanism were shared.  If 

Medusa is capable of loading and running this module successfully it will show 

that the main aim of this project has been accomplished - namely that it is 

possible for a user to design modules suitable for their needs when they only 

know the details of the interface. 

 

In order to assess the success of these modules examples from a variety of 

sources will be analysed.  The results provided in these sources will then be 

compared with those generated by the modules.  As will be shown below, there 

are no discrepancies between the published and generated results and hence the 

concept and design of Medusa has been validated. 

 

 

1.2 Repor t Outline 

 

The layout of the report is: 

 

Chapter  2 provides the background information to this project.  An overview of 

Petri net theory is provided which covers Place-Transition and Generalised 

Stochastic Petri Nets as these are the types supported by Medusa.  Some other 

common types of Petri net are introduced for completeness.  This is followed by a 

brief description of some existing Petri net tools which leads on to the 

justification for the production of yet another such program. 

 

Chapter  3 details the architecture of the Medusa editor/animator.  An Object 

Orientated approach is used as well as some fragments of Java code.  Medusa 

presents Petri nets to the user in graphical form and allows elements to be added 

and removed as desired.  The functionality of the Medusa animator is also 

described.  This animator is capable of traditional forwards animation where the 
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user selects which enabled transition they wish to fire and then updates the 

graphical display of the net accordingly.  It also allows the user to undo the most 

recent firing – a feature known as backwards animation.  The various ways in 

which this could have been accomplished are described before the 

implementation of the method using a stack is justified. 

 

Chapter  4 deals exclusively with the way in which Medusa can be extended with 

the addition of user-created modules.  This is accomplished through the use of the 

Java Reflection mechanism.  A description of Reflection in general is given 

before the implementation used by Medusa is considered in more detail.  Central 

to the process of running a module is the parsing of the description of the Petri 

net currently opened in Medusa from a Petri Net Markup Language (PNML).  

This requires the use of an XML parser and so the two main ways of doing this in 

Java (JAXP and JAXB) are detailed.  Finally, the decision to adopt the JAXP 

method is justified. 

 

Chapter  5 explains how a module which uses graph theory to analyse a Petri 

net’s attributes was produced.  The mathematical theory which underlies this 

process is described in detail to ensure that the reader is aware of the issues which 

influenced the implementation.   The key issue faced when designing this module 

was the implementation of an algorithm capable of describing the strongly 

connected components of a graph and it is on this topic that the second part of 

this chapter concentrates.  The chapter ends by showing that the implementation 

of the algorithm adopted produces correct results. 

 

Chapter  6 describes a module which allows Medusa to interface with the 

Dnamaca Markov chain analyser.  The prime motivation behind this was to 

correct a flaw in the implementation of the DaNAMiCS tool which attempts to 

perform the same function.  It also provided an opportunity to show that Medusa 

could be made to interface with existing tools through its modular system.  The 

implementation of the module uses the incidence function description of Petri 

nets to create correct Dnamaca model definitions.  DnamacaModule also runs 

Dnamaca automatically with the model description it has generated.  The way in 

which this was accomplished is described.   
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Chapter  7 validates the concept and implementation of Medusa as an extensible 

editor.  This is achieved by using the modules described above to produce results 

by running them with Medusa and comparing these results against published 

versions.  This process not only shows that it is possible to produce an extensible 

editor capable of running modules but also demonstrates that the specific 

implementations of the modules are correct.  Particularly important is the fact that 

a module produced by a third-party, Mark Wass, is run successfully by Medusa 

and produces correct results.  This demonstrates that the main concept behind 

Medusa, as detailed in the motivation above, has been fulfilled by the 

implementation. 

 

Chapter  8 summarises what has been achieved in the course of this project, 

presents some conclusions and raises issues which could be addressed in future 

work. It is concluded that the project has been a success because of the results 

presented in Chapter 7.  These demonstrate conclusively that it is possible to 

design modules for Medusa without access to the source code which function 

correctly. 

 

Appendix A provides a user guide for the Medusa editor/animator. 
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Chapter  2: Background 

 

 

2.1  Introduction 

 

The aim of this chapter is to introduce the reader to the project’s background.  

First an overview of the mathematical modelling formalism of Petri nets is 

provided which covers the nets supported by Medusa as well as introducing 

briefly some of the other forms which exist.  This is followed by a section 

detailing the existing pieces of Petri net modelling software.  This section will 

identify why there is the need for another piece of software in what is already a 

well-provided field. 

 

 

2.2  Overview of Petr i Net Theory 

 

Petri nets were invented by Carl Adam Petri in 1962 as a formalism for 

describing and reasoning about concurrent systems [BK95].  They have been 

used to model a variety of such systems, including communication protocols, 

parallel programs, multiprocessor memory caches and distributed databases 

[KNO99].  Petri initially described Place-Transition nets but numerous other 

classes of nets have since been defined to allow more sophisticated reasoning.  

One such class of nets is Generalised Stochastic Petri Nets (GSPNs) which 

introduce time as a variable and thus allow performance analysis of the modelled 

system to be conducted.  This chapter is mostly concerned with Place-Transition 

nets and GSPNs as these are the two forms of Petri nets which can be modelled 

with the Medusa editor, but brief mention will also be made of some of the other 

types which exist. 

 

 

2.2.1  Place-Transition Nets 

 

Place-Transition nets are the basic type of Petri net from which all other types are 

derived.  As described in [BK95], they consist of four elements: 
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• places, which are represented by circles and model conditions or 

objects such as program variables. 

• tokens, which are represented by black dots.  These are contained 

within places and represent the specific value of the condition or 

object which that place represents.  The initial arrangement of tokens 

on places is known as the initial marking of the Petri net. 

• transitions, which are represented by hollow rectangles and model 

activities which change the values of conditions and objects. 

• arcs, which are represented by lines connecting places and transitions.  

These indicate which objects are changed by which activities.  As 

Place-Transition nets are bipartite, arcs may only connect places to 

transitions or transitions to places, but not places to places or 

transitions to transitions.  An arc may have a weight, which specifies 

how many tokens are created or destroyed when a transition to which 

it is attached is fired.    

 

All of these can be seen in the illustration of a simple Place-Transition net in 

Figure 2.1. 

 
 
 
 
 
                 p 1                                   t1                    p2 

 
 
      
       t3         t2 

 
 
 
                     p3 

 
Figure 2.1: A Place-Transition net. 
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A Place-Transition net can be defined formally using functional notation: 

 

Definition 2.1 A Place-Transition net is a 5-tuple PN =  (P,T,I−,I+,M0) where  

• P = {p1, . . . , pn}  is a finite and non-empty set of places, 

• T = { t1, . . . , tm}  is a finite and non-empty set of transitions, 

• P T = Ø, 

• I−,I+ : P x T 0  are the backward and forward incidence functions 

respectively.  If I−(p,t) > 0, an arc leads from place p to transition t, 

whilst if I+(p,t) > 0 then an arc leads from transition t to place p,  

• M0 : P 0  is the initial marking. [BK95] 

 

The Petri net in Figure 2.1 could therefore be described as PN = (P,T, I−,I+,M0) 

where 

• P = {p1, p2, p3,} , 

• T = { t1, t2, t3,} , 

• I−(p1,t1) = 1, I−(p2,t2) = 1, I−(p3,t3) = 1. All other values of I− are zero, 

• I+(p1,t3) = 1, I+(p3,t2) = 1, I+( p2,t1) = 1. All other values of I+ are zero, 

• M0(p) = 1 if p = p1, M0(p) = 0 otherwise, ∀p ∈ P. 

 

The dynamic behaviour of a Petri net is determined by rules concerning the 

enabling and firing of transitions, as described in [BK95].  When the arcs 

connecting a transition to its input places have a weight of one, the transition is 

enabled if all of its input places are marked with at least one token.  Only an 

enabled transition may fire.  When it does one token on each of its input places is 

destroyed and one token is created on each of its output places.  It is possible, 

however, for an arc to have a weight greater than one.  In this case, if the arc is an 

input arc then the transition is only enabled if the number of tokens on the place 

to which it is connected is equal to or greater than its weight.  When then 

transition is fired, the number of tokens destroyed on the place is equal to the 

arc’s weight.  If it is an output arc, firing the transition creates the number of 

tokens on the output place equivalent to the arc’s weight.  The numerical values 

of each of the I− and I+ functions correspond to the weights of the arcs connecting 
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places and transitions.  By convention arc weights of 1 are not shown explicitly 

[BK95].  In Figure 2.1, it can be seen that t1 is the only enabled transition as there 

is one tokens on p1.  The effect of firing t1 is shown in Figure 2.2. 

 

 
 
             p1                                          t1                          p2 

 
 
      
            t3             t2 

 
 
 
                              p3 

 
Figure 2.2: The effect of firing the enabled transition of the net in Figure 2.1. 

 

 

The rules for the enabling and firing of transitions can be formalised thus: 

 

Definition 2.2 If PN =  (P,T,I−,I+,M0)  is a Place-Transition net  

• A marking of a Place-Transition net is a function M : P 0 , where 

M(p) is the number of tokens on place p 

• A set P ⊆ P is marked at marking M, iff ∃p ∈ P : M(p) > 0; otherwise 

P is unmarked or empty at M 

• A transition t ∈ T is enabled at M, denoted by M[t >, iff M(p) ≥ I−(p,t) 

∀p ∈ P 

• A transition t ∈ T, enabled at marking M, may fire yielding a new 

marking M’  where 

M’ (p) = M(p) − I−(p,t) + I+(p,t)     ∀p ∈ P 

 denoted by M[t > M’.  In this case M’  is directly reachable from M 

and we write M  M’.  Let 
�

be the reflexive and transitive closure 

of .  A marking M’  is reachable from M, iff M 
�

M’. 

• 
�������	��

������������
���������� �!�"�$# ����
%��&��'�������(��
)���*�+�,&-�.#�
����-&/�0�

1�

= t1  . . . tn 

n ≥ 0 such that there are markings M1, . . . ,Mn+1  satisfying Mi[ti > Mi+1 

∀i = 1, . . . , n.  A shorthand notation for this case is M1[  > and  
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M1[  > Mn+1  243	5�673�8:9<;�=�31> ?A@CB(D�3E3�FG6H9 ?7I);�2J;�K:LM5N3�O�P
3�KQ8�3*P15SR�3	K�T�9U3�RWVX?
and M[  > M always holds. [BK95] 

 

The firing of a transition when the Petri net has one marking creates a new 

marking.  The set of all markings which are reachable from M0 is known as the 

reachability set of the Petri net and the connections between the markings in this 

set are represented by the reachability graph [BK95].  The use of such graphs in 

the analysis of the attributes of a given Petri net, for example whether or not it is 

live, is examined below in Chapter 5. 

 

Place-Transition nets do not contain any concept of time and as such cannot be 

used as a performance analysis formalism [KNO99].  There are, however, a 

number of time-augmented Petri net formalisms which can be used to model 

performance.  One of the most widely used is the Generalised Stochastic Petri 

Net (GSPN) and it is these which Medusa supports. 

 

 

2.2.2  Generalised Stochastic Petr i Nets (GSPNs) 

 

GSPNs have two types of transitions: immediate and timed.  An enabled 

immediate transition fires in zero time whilst enabled timed transitions fire after a 

random exponentially-distributed delay (usually designated as rate λi for 

transition ti).  Timed transitions are represented as hollow rectangles whilst 

immediate transitions are filled.  If only timed transitions are enabled, the 

probability of one transition ti which is a member of the set of enabled transitions 

( ENT(M) ) firing is given in [BK95] as: 

          λi        
j:t j ∈ EN T (M) λj 

 

When ENT(M) contains only one immediate transition, that transition fires with 

probability 1.0.  If, however, it contains more than one such transition, the 

relative frequency with which they fire is determined by using their assigned 

weights.  Given the simultaneously enabled immediate transitions t1, . . . , tn with 
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corresponding weights w1, . . . , wn , the probability of ti firing is given in 

[KNO99] as: 

       wi 
k=1 wk 

 

A GSPN can be defined formally thus: 

 

Definition 2.4  A GSPN is a 4-tuple GSPN = (PN,T1 ,T2 ,W) where  

• PN = (P,T,I−,I+,M0) is the underlying Place-Transition net, 

• T1 ⊆ T is the set of timed transitions, T1 ≠ Ø, 

• T2 ⊆ T denotes the set of immediate transitions, T1 T2  = Ø, T = T1 ∪ 

T2, 

• W = (w1, . . . , w|T|) is an array whose entry wi ∈ + is either 

• a possibly marking dependent rate of a negative exponential 

distribution specifying the firing delay, when transition ti is a 

timed transition, i.e. ti ∈ T1, or 

• a possibly marking dependent firing weight where transition ti 

is an immediate transition, i.e. ti ∈ T2. [BK95] 

 

As described in [BK95], a GSPN has two types of markings.  Immediate 

transitions fire in zero time and as such the time spent in markings with enabled 

immediate transitions is also zero.  These markings are known as vanishing 

markings as a random observer will never see them.  However, markings which 

enable only timed transitions will be observed as they are not left immediately.  

These are known as tangible markings. 

 

 

2.2.3  Other  Petr i Nets 

 

Two other common forms of Petri nets are Coloured Petri Nets (CPNs) and 

Queuing Petri Nets (QPNs).  As Medusa does not support either only a brief 

outline is presented below.  Readers wishing to know more are directed to the 

bibliography, especially those texts which comprise the sources for this chapter. 
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One problem with Place-Transition nets and GSPNs is that their graphical 

representations can become very confused for large or complex systems.  

Coloured Petri Nets are intended to remedy this problem and are fully described 

in [BK95].  In a CPN tokens are assigned different colours and the transitions 

have different firing rules based on the colours of the tokens on their input places.  

They have not been included in Medusa because they add no expressive power; it 

is possible uniquely to unfold every CPN into an uncoloured Petri net 

representing the same model [KNO99]. 

 

As described in [KNO99], Queuing Petri Nets are an attempt to overcome the 

difficulties faced when modelling queues with GSPNs. Queuing Petri Nets 

integrate the concept of queues into a coloured version of GSPNs (CGSPNs).  To 

summarise briefly, a queued place has two components: the queue and the 

depository for tokens which have been serviced at this queue.  Tokens which 

arrive at a queued place are placed in its queue for service and are not available to 

output transitions until they have exited the queue and been placed in the 

depository.  QPNs are therefore a convenient way of modelling queues using 

Petri nets but their use is somewhat specialised and they have, for that reason, not 

been supported by Medusa. 

 

 

2.3  Existing Petr i Net Tools 

 

There are a huge number of pre-existing Petri nets tools. For example, one web-

page contains links to 43 different pieces of software designed explicitly for the 

creation and analysis of Petri nets.1  A number of examples tools which illustrate 

the range available are given below before some of the problems with existing 

tools are elucidated.  This leads to a justification as to why yet another piece of 

software is needed in what would seem to be an over-crowded field. 

 

 

 
 
                                                           
1 See http://www.aut.utt.ro/~mappy/petri/home.html 



 12

2.3.1  Data Network Architecture - Modelling Concurrent Systems
(DaNAMiCS) [DAN] 

 

DaNAMiCS is an improved version of DNAnet, another Petri net tool.  It 

supports Place-Transition, Generalised Stochastic and Coloured Petri Nets, and 

allows the user to insert subnets into other nets.  It has an animator which allows 

the user to fire enabled transitions but has no facility to undo a firing.  Its analysis 

suite is highly comprehensive and includes a simulator as well as invariant and 

graph-theory based analysis tools.  It also has the ability to perform steady-state 

analysis of a Petri net by exporting it to Dnamaca, a Markov-chain analyser. 

 

 

2.3.2  Reference Net Workshop (Renew) [REN] 

 

In contrast to DaNAMiCS, Renew is simple and does not offer the same range of 

analysis tools as DaNAMiCS. Its only tool is a simulator.  It does, however, 

incorporate some interesting features.  The design is intended to be of open-

architecture and the source code is freely distributed so that users with knowledge 

of Java programming can customise it as much as they want (including adding 

analysis tools).  Also, it has the ability to export nets in an XML-based format 

which could be read or produced by other tools without knowledge of the internal 

architecture of Renew. 

 

 

2.3.3  Petr i Net Kernel [PNK] 

 

Like Renew, Petri Net Kernel is much simpler than DaNAMiCS.  As its name 

suggests it is not intended as a complete tool in its own right but as the basic unit 

around which the user can construct, in Java, a more sophisticated application.  It 

uses XML heavily both to save nets created in it by the user and to define valid 

net classes and tools created by the user to suit their particular needs.  The only 

analysis tool which it includes is a simulator. 
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2.4  Justification for Medusa 

 

Given this range of existing software, why is there a need for another tool to be 

produced?  The production of Medusa can be justified on two levels: it corrects 

known flaws in existing tools’  implementations and it offers services which no 

other application does. 

 

As described above, DaNAMiCS is able to perform steady-state analysis by 

exporting nets to the Dnamaca Markov chain analyser.  There is a flaw in its 

implementation, however, which causes it to generate incorrect results when a 

place is both the input and the output place of a transition.  If a user does not have 

access to DaNAMiCS’  source code there is no way to rectify this.  Medusa, 

however, offers the ability to solve the problem as a user can write a module to 

perform the conversion correctly.  Furthermore, the conversion in DaNAMiCS is 

entirely automated and therefore does not allow the user to investigate exactly the 

properties of the net in which they are interested.  A Dnamaca interface module 

could improve upon this by allowing the user to customise the Dnamaca file 

which it produced before passing it to Dnamaca.  Of course, this does not apply 

exclusively to Dnamaca.  A similar module can be produced to allow the 

conversion of Petri nets into a format suitable for input into another tool. 

 

Medusa attempts to offer a range of services which no other tool does.  Tools like 

DaNAMiCS offer an enormous range of analysis options, but that range is still 

limited and if the user wishes to do something not included in this range then they 

must either find another tool or obtain the source code and modify it 

appropriately.  The design of Medusa, therefore, is intended to produce a tool 

with an open architecture, supporting basic features like editing and animation 

but allowing the user to create modules to perform specific tasks without having 

to start from scratch or modify somebody-else’s code.  The Petri Net Kernel aims 

to do something similar but the basic functionality which it includes is less than 

that of Medusa.  Consequently it requires more work to produce the same results. 

 

The XML format of Renew is a very interesting feature as it promotes 

interoperability between tools.  It allows Petri nets to be defined textually and so 
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to be inputted to and outputted from other tools.  The problem is that it is an 

entirely arbitrary format created by the programmers of Renew and therefore 

requires that other programmers have heard of the tool and know of its XML 

format if they are to incorporate it in their own programs.  A better solution 

would be to adopt a generally recognised XML format about which others are 

likely to have heard.  This ensures that a ‘standard’  output format genuinely is 

standard.  The Petri Net Markup Language [PNML] is an attempt to introduce 

just such a format and it is this which Medusa uses as a standard output format. 

 



 15

 
 
 
 
     1+ 
 
 
 
 
 
 
 
 
 
 
             start 
 
 
             end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Object diagram of the structure of a Petri net as represented in 

Medusa 
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Chapter  3: The Medusa Editor /Animator  Architecture 

 

 

3.1 Introduction 

 

The aim of this chapter is to provide details of the architecture of the basic 

Medusa package.  The program is composed of two main parts, the editor (which 

allows the user to enter Petri nets through a graphical interface) and the animator 

(which allows the user to move tokens around a net). The layout of this chapter 

reflects this structure by considering each in turn. 

 

For the editor, the emphasis is on the internal representation of Petri nets used by 

Medusa.  This is fundamental to the success of the project as a whole: if Medusa 

does not represent Petri nets correctly then it will fail even if other features are a 

success. 

 

For the animator, the way in which transitions are checked to see if they are 

enabled is detailed, as is the way in which firing them is handled.  Together these 

allow the user to perform forwards animation on the displayed Petri net.  A 

special feature of the Medusa animator is its ability to perform backwards 

animation.  There were two main ways in which this could have been 

implemented and so both options are explored before the choice adopted is 

justified. 

 

 

3.2 The Editor ’s Architecture 

 

The editor is the core component of Medusa as it is through this that the user can 

add to and remove elements from the net which they are editing.  This is 

accomplished through the Graphical User Interface (GUI) shown in Figure 3.2. 
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Figure 3.2: The appearance of the Medusa GUI. 

 

 

The row of buttons below the menu bar allows the user to select which function 

they wish to perform.  The large white panel below these buttons, known as the 

Pet r i Net Panel , displays the Petri net currently being edited.  By clicking with 

the mouse on a button and then clicking on a location on the Pet r i Net Panel  the 

appropriate action, such as adding a place, is performed at that location. 

 

The object diagram in Figure 3.1 shows how Petri nets are represented in Java 

classes behind this Pet r i Net Panel .  Note that not every function which exists in 

the source-code is shown on this diagram – there are, for example, a number of 

functions in the Pet r i Net  class which deal with the addition of various types of 

element through the GUI which are not reproduced as they do not affect the way 

in which Medusa represents the nets. 

 

Figure 3.1 expresses the structure of Medusa’s internal representation very 

succinctly.  The  Pet r i Net  stores its constituent el ement s  in four Vect or s , one 

each for Pl aces , Ar cs, Ti medTr ansi t i ons  and I mmedi at eTr ansi t i ons. 

Vect or s  are an ideal collection class for this as they can be iterated over in the 
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same manner as C++ arrays, which makes it easy to locate specific elements.  

They can also be resized dynamically.  This means they can be initialised 

containing no elements but then as the user adds elements to the Petri net these 

elements can be added to the correct Vect or .  Elements can also be removed 

from Vect or s  and a Vect or  will resize itself automatically when this happens.  

This is used when the user wishes to delete elements from the net as the selected 

element is removed from the Vect or  in which it is located. 

 

The storage of the transitions which make up the net in two separate Vect or s 

could be criticised as in order to access all transitions, for example when drawing 

all transitions, first one Vect or  and then another must be iterated over.  This is 

not a flaw, however, as it simplifies the process of checking exclusively for one 

type of transition – for example when checking if any immediate transitions are 

enabled before doing so for timed transitions (see below). 

 

 

3.3  The Animator ’s Architecture 

 

Medusa’s animator has two modes of operation: forwards (or manual) animation 

and backwards animation.  The first mode can also be found in the animators of 

existing tools like DaNAMiCS.  It allows the user to select which transition they 

would like to fire and then performs the act of firing if the selected one is 

enabled, altering the marking of the net accordingly.  All of this presented on the 

graphical display and so as the user fires a sequence of transitions they can 

observe the tokens moving around the net. 

 

The second mode (backwards animation) is not supported by many tools.  Its 

effect is to undo the firing of the most recently fired transition. This allows the 

user to step backwards through the sequence of fired transitions in order to 

correct mistakes or experiment with a different sequence. The various ways in 

which this could have been implemented are considered below before the actual 

way in which it was done is described and justified. 

 



 19

3.3.1 Forwards Animation 

 

When the animator is started Medusa waits for the user to click on the 

Pet r i Net Panel .  If a click occurs, its coordinates are compared with those of all 

transitions.  If it occurs within a transition and that transition is enabled, the 

transition is fired and the display updated accordingly. 

 

Checking to see if a mouse-click event occurs within a transition is 

straightforward as mouse-clicks have an (x, y) location in the same way as all 

Nodes  of a Petri net.  As the centre points and sizes of all Nodes  on screen are 

known, whether or not a click occurs over a certain transition can be easily 

computed.  

 

Having located the transition which the user wishes to fire, Medusa then attempts 

to fire that transition.  The first step is to check that the transition is enabled.  As 

described in Chapter 2, this is only the case if the all of the transition’s input 

places are marked with at least the number of tokens specified by the arcs 

connecting these places to the transition.  There is a further complication if the 

net is a GSPN and the user wishes to fire a timed transition as it is necessary first 

to ensure that there are no enabled immediate transitions.  This is because 

immediate transitions fire in zero time and so fire before timed transitions.  The 

pseudocode for the function which is used by timed transitions to check if they 

are enabled is shown in Figure 3.3.  Note that the routine used by immediate 

transitions is identical except that the status of other immediate transitions is not 

checked first. 

 

If the transition is enabled then it can be fired.  First, the numbers of tokens 

specified by the weights of the connecting arcs are destroyed on the transition’s 

input places.  Then the correct numbers of tokens are created on the transition’s 

output places, again according to the weights of the arcs connecting the transition 

to these places.  The complete algorithm for achieving this is shown is Figure 3.4.  

It starts with a call to the routine in Figure 3.3 which checks if the transition is 

enabled.  If it is not, the firing routine terminates, otherwise the creation and 

destruction of tokens proceeds. 
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publ i c bool ean i sEnabl ed( )  {  
      f or  ( ever y i mmedi at e t r ansi t i on)  {  
             i f  ( t hat  t r ansi t i on i sEnabl ed( ) )  
           r et ur n f al se;  
      }  
 

f or  ( ever y ar c)  {  
    i f  ( t hat  ar c ends at  t hi s  t i med t r ansi t i on)  {  
           / / get  t he pl ace at  t he st ar t  of  t he ar c;  
 
           i f  ( t he number  of  t okens on t hat  pl ace i s  

    l ess t han t he wei ght  of  t he ar c)  {  
r et ur n f al se;  

           }  
        }  
      }  
      r et ur n t r ue;    

}  

 
Figure 3.3: Pseudocode used by a timed transition to identify if it is enabled 

 

 
publ i c bool ean f i r e( )  {  

   i f  ( i sEnabl ed( ) )  {  
f or  ( ever y ar c)  {  

i f  ( t hat  ar c ends at  t hi s  t r ansi t i on)  {  
    / / get  t he pl ace at  t he st ar t  of  t he ar c  
    / / and al t er  t he number  of  t okens on i t   

/ / by t he wei ght  of  t he ar c   
           }  
        }  
 

f or  ( ever y ar c)  {  
i f  ( t hat  ar c st ar t s  at  t hi s t r ansi t i on)  {  

    / / get  t he pl ace at  t he end of  t he ar c 
    / / and al t er  t he number  of  t okens on i t  

/ / by t he wei ght  of  t he ar c   
           }  

}  
r et ur n t r ue;  

      }  
      r et ur n f al se;  
 }  

 
Figure 3.4: Pseudocode representation of the routine by which the animator 

assess if a transition can fire and then performs the firing if it can 
 

 

As this is a direct implementation of the rules for the dynamic behaviour of Petri 

nets as outlined in Chapter 2 this scheme gives the correct results.  In order to aid 

the users of Medusa, when the animator is in use the transitions which are 

currently enabled are highlighted in red.  This is shown in the screenshot in 
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Figure 3.5.  Note that t1 is an immediate transition and as such prevents t3, a 

timed transition, from being enabled even though there is one token on p3. 

 

 

Figure 3.5: Screenshot showing Medusa whilst the animator is being used.  Note 
that the only enabled transition, t1, is highlighted. 

 

 

When the user ends manual animation the net reverts to the marking which 

existed prior to the animator being enabled. 

 

 

3.3.2 Backwards Animation 

 

A novel feature of the animator provided with Medusa is the ability to do 

backwards animation.  This is a feature lacking from DaNAMiCS.  This gives the 

user the ability to backtrack whilst animating so they can retrace their steps whilst 

animating to try different choices or to correct mistakes.  This is achieved by 

undoing the effect of firing the most recent transition to have been fired.  There 

were two possible ways in which this could be achieved, namely by redoing all 

but the final transition which has been fired or by using a stack. 
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In this first method, a list of all transitions which have been fired is maintained.  

When the user wishes to step backwards through the animation, the net reverts to 

the initial marking and the effect the firing of each transition in the list is applied 

until the penultimate firing is reached.  The resulting marking can then be applied 

to the net as a whole.  The problem with this method is that it is inefficient:  if n 

transitions are fired the cumulative effect of firing n-1 transitions must be 

calculated to undo one firing.  Hence the larger the value of n the longer this 

process will take. 

 

A much more efficient implementation is achieved through the use of a stack.  

Every time a transition is fired, details about it are pushed on to a stack.  When 

the user wishes to perform backwards animation details about the last transition 

to be fired are popped off the top of the stack and, using these details, the 

transition is identified and then ‘unfired’ .  The general operation of a stack is 

shown in Figure 3.6.  This method is more efficient as stepping backwards to the 

previous marking only requires the calculation of the effects of ‘unfiring’  one 

transition, no matter how many transitions have been fired up to that point.  For 

this reason it was this method which Medusa implements. 

 

 
 
  
  

 empty                  push(A)     push(B)           pop()            push(C) 
 

Figure 3.6: General operation of a stack 
 

 

The implementation of the stack method was aided by the fact that Java provides 

a ready-made St ack ADT with Obj ect  push( Obj ect  i t em)  and Obj ect  

pop( )  methods.  In Medusa, every instantiated Pet r i Net  object has a St ack 

called t r ace which is used when animating.  Whenever a transition is fired, its 

name is pushed on to t r ace and when the user wishes to step backwards the top 

name is popped off and used to identify the transition to be ‘unfired’ .  The 

pseudocode representation of the routine for retrieving the correct transition is 

shown in Figure 3.7. 

        A         A 

        B 

        A         A 

        C 
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publ i c voi d s t epBackwar ds( )  {  
i f  ( t her e i s at  l east  one t r ansi t i on on t he st ack) {  
 St r i ng name = ( St r i ng)  t r ace. pop( ) ;  

  Tr ansi t i on t  = get Tr ansi t i on( name) ;  
       i f  ( t  i s a val i d t r ansi t i on)  {  

t . unFi r e( ) ;  
}  
          

}  
}  

 

Figure 3.7: Pseudocode of the function used for retrieving the transition whose 
firing is to be undone. 

 
 

Once the transition has been identified the effects of its last firing can be undone. 

This process of ‘unfiring’  a transition is the exact opposite of firing it – the 

number of tokens specified by the output arcs’  weights are destroyed on the 

output places and  the number of tokens specified by the input arcs’  weights are 

created on the input places.  The marking of the net which existed before that 

transition was fired is therefore restored. 

 

This chapter has examined the structure of the two basic components of Medusa.  

The aim of the project, however, was to create an extensible editor to which the 

user could add functionality through modules.  The next three chapters, therefore, 

will detail the mechanism by which Medusa supports this and describe the 

production of two such modules.  The success of the implementation is assessed 

in the penultimate chapter. 
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Chapter  4: Extensibility 

 

 

4.1 Introduction 

 

The aim of this chapter is to detail the mechanism by which Medusa supports the 

addition of user-designed modules about which nothing is known at compile-

time.  This mechanism contains two import elements.  Firstly, XML is used to 

define saved nets.  The format of the language used is the Petri Net Markup 

Language (PNML) which is a proposed standard for the interchange of Petri nets 

between various tools.  There were a variety of ways in which files containing 

nets defined in this language could be parsed by Medusa.  The section below lays 

out the advantages and disadvantages of each method.  Secondly, the loading and 

running of modules is handled through the Java Reflection API.  An overview of 

this mechanism is given as well as details of its specific implementation in 

Medusa.  The Java interface which all modules must implement in order to be 

compatible with Medusa is given in this section. 

 

Taken together these two elements define the interface through which Medusa 

interacts with user-designed modules.  In order for Medusa to be considered a 

success, therefore, it should only be necessary for users wishing to design their 

own modules to understand the contents of this chapter.  The only information to 

which a third party need have access is this description of the interface.  If their 

modules adhere to the guidance given herein they should be able to be loaded and 

run by Medusa with no problems. 

 

 

4.1.1 Overview of How Medusa’s Extensibility Works 

 

This section gives a step-by-step guide to the process of loading and running a 

module.  In order for Medusa to run a module, the module must implement the 

Modul e interface shown in Figure 4.1.  The use to which each method is put is 

covered in the step-by-step guide 
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publ i c i nt er f ace Modul e {  
s t at i c f i nal  St r i ng i nput Fi l eName = " cur r ent . xml " ;  

   publ i c voi d r unModul e( ) ;  
   publ i c St r i ng get Modul eName( ) ;  
}  
 

Figure 4.1: The Modul e interface. 
 

 

When a module is loaded and run the following events occur: 

 

1) When the user selects “Load Module”  from the “Module”  menu, a 

standard Swing f i l e_chooser  dialog is opened.  From this, the user 

selects which Java . c l ass  file containing the desired module.  An 

instance of the module thus specified is created through Reflection.  

Modules must have a parameterless constructor. 

 

2) A “Run Module”  option is added to the “Module”  menu.  The “Module”  

menu will now resemble the screenshot shown in Figure 4.2. 

 

3) When the user selects “Run Module”  from the menu, Medusa saves the 

Petri net being currently edited under the name cur r ent . xml  and 

Reflection is again used to invoke the r unModul e( )  method of the 

module. 

 

4) This causes the module to run.  Typically it will have to parse 

cur r ent . xml  into its internal representation of a Petri net before 

executing further. 

 

 
Figure 4.2: Screenshot showing the appearance of the Module menu when a 

module has been loaded and is ready to be run. 
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4.2 The Petr i Net Markup Language [JKW08/00] [PNML] 

 

The Extensible Markup Language (XML) is a meta-markup language which 

defines the rules by which users can define their own markup languages based on 

tags [ERH99].  These tags define the meaning and structure of the elements in the 

document in which they occur rather than the way in which that document is 

formatted.  This ability to customise a language to suit specific needs has lead to 

XML becoming used in a variety of fields. As described in [ERH99], there are 

XML languages for describing topics as varied as chemical formulae,1 musical 

scores2 and job advertisements3. 

 

XML is easy to read and write as it is non-proprietary and composed entirely of 

ASCII characters [ERH99].  It can also be understood by a human reader.  This 

makes it ideal for use as a language for exchanging data between pieces of 

software as the applications involved need only understand how to read XML and 

not the proprietary data formats which each uses (many applications exploit this – 

see [ERH99]).  As Medusa is designed to be extensible, such a language is ideal 

as it allows it the saving of nets in a way which permits other tools to load them.  

Medusa will also be able to load nets created in another tool in the same fashion.  

Given that Petri nets are a commonly used modelling formalism, it should come 

as no surprise that attempts are being made to introduce a standard format for the 

interchange of Petri nets.  This format is called the Petri Net Markup Language 

[JKW08/00] [PNML]. 

 

PNML is not the first time that XML has been used as a language for the 

definition of Petri nets, however.  As detailed in [KW00], the Renew application 

supports the export of nets in XML.  The problem with the format, however, is 

that it is geared exclusively towards the needs of Renew and as such contains 

data concerning the way in which that tool displays the nets which would be of 

no use to another piece of software.  For example, it saves the colour of element 

and the font used to display their labels.  Medusa, however, does not store either. 

                                                           
1 See http://www.xml-cml.org/ 
2 See http://www.oasis-open.org/cover/mnml199906.html 
3 See http://www.hr-xml.org/channels/home.htm 
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At the same time, PNML is designed as a generic language for representing Petri 

nets without worrying how each tool represents them (graphically or otherwise).  

It is also being developed as a standard for all tools and is not just implemented 

by one of tools amongst the range available.  It therefore seems ideally suited to 

the role of being the exchangeable saved-file format of Medusa.   

 

PNML is not the only attempt to define a standard Petri net exchange language.  

A number of other text-based formats have been suggested.  These include the 

Abstract Petri Net Notation (APNN) [BKK94] and the format used by 

Design/CPN [LM00].  Neither were suitable however.  APNN defines the 

structure of the net without any tool-specific implementation details.  However, 

the way in which GSPNs were represented is not very intuitive as it does not have 

transitions which were explicitly “ timed”  or “ immediate”  but merely of priority 

“0”  or “1”  [APNN].  APNN also lacks a way of representing the graphical layout 

of a Petri net and so a tool using it as a file format would have to employ a graph-

drawing algorithm to draw nets saved in this language.  The complexity of such 

algorithms would greatly increase the difficulty of programming such a tool.  The 

Design/CPN format was rejected for the same reasons as the Renew XML format 

– namely that it is a proprietary format which is only used by a single tool. 

 

PNML has two further attributes which makes it the most attractive choice for 

Medusa’s file format.  Firstly, it supports the addition of user-defined Petri net 

types [JKW0/00].  This means that although it does not explicitly support timed 

and immediate transitions as used in GSPNs, it can easily be modified so to do 

and will still be understood by other tools.  Secondly, it is an XML based format.  

This is a great advantage as there are standard APIs for parsing to and from XML 

in Java which could be implemented.  Had APNN been chosen for example, the 

construction of a parser suitable for reading files saved in that format would have 

been much more time-consuming.  In order to illustrate the PNML format, Figure 

4.3 shows a net and its corresponding PNML description.  As can be seen PNML 

is easy to understand.  In between the <pl ace i d=" p1" > and </ pl ace> tags, 

everything about that place is described.  The value of its initial marking is 

contained between tags of that name, whilst its on-screen location is found in the 

<posi t i on / > tag, which is marked as containing graphical information.  
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Transitions are similarly described, whilst arcs record their start and end as the 

nodes which they connect. 

  
 
                         p1                                                t1            

 
<?xml  ver s i on=" 1. 0" ?> 
 <net  i d=" n1"  t ype=" nul l " > 
  <name> 
   <val ue>C: \ PNML Exampl e. xml </ val ue> 
  </ name> 
 
  <pl ace i d=" p1" > 
   <gr aphi cs> 
    <posi t i on x=" 141"  y=" 79"  / > 
   </ gr aphi cs> 
   <name> 
    <val ue>nul l </ val ue> 
    <gr aphi cs> 
     <of f set  x=" - 15"  y=" - 15"  / > 
    </ gr aphi cs> 
   </ name> 
   <i ni t i al Mar ki ng> 
    <val ue>1</ val ue> 
    <gr aphi cs> 
     <of f set  x=" 0"  y=" 0"  / > 
    </ gr aphi cs> 
   </ i ni t i al Mar k i ng> 
  </ pl ace> 
 
  <t r ansi t i on i d=" t 1"  t ype=" t i med"   

di st r i but i on=" exponent i al "  r at e=" 1. 0" > 
   <gr aphi cs> 
    <posi t i on x=" 206"  y=" 77"  / > 
   </ gr aphi cs> 
   <name> 
    <val ue>nul l </ val ue> 
    <gr aphi cs> 
     <of f set  x=" - 15"  y=" - 15"  / > 
    </ gr aphi cs> 
   </ name> 
  </ t r ansi t i on> 
 
  <ar c i d=" a1"  sour ce=" p1"  t ar get =" t 1" > 
   <gr aphi cs> 
    <posi t i on x=" 170"  y=" 75" / > 
   </ gr aphi cs> 
   <i nscr i pt i on> 
    <val ue>1</ val ue> 
    <gr aphi cs> 
     <of f set  x=" - 15"  y=" +20" / > 
    </ gr aphi cs> 
   </ i nscr i pt i on> 
  </ ar c> 
   
 </ net > 

 
Figure 4.3: A Petri net and its corresponding PNML description 
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4.2.1 JAXB or JAXP? 

 

There are two packages for handling XML input and output in Java available 

from Sun Microsystems: Java Architecture for XML Binding [JAXB] and the 

Java APIs for XML Processing [JAXP].1  JAXB creates a two-way mapping 

between XML documents and Java objects.  It does this through a user-provided 

schema which defines how XML elements relate to the attributes of the Java 

classes which they describe [JAXB].  This is then used by the JAXB compiler to 

generate classes which have the in-built ability to be created from XML and to 

create an XML representation of themselves through their unmar shal ( )  and 

mar shal ( )  methods respectively.  This removes the need for the user to write 

their own code to parse and furthermore guarantees that the XML which is 

produced will be valid [JAXB]. 

 

JAXP is a package which provides a variety of methods for parsing XML, all of 

them using Crimson as the reference implementation.  It provides Java classes 

which are used by the programmer to implement two of the most common 

standards for XML parsing: Document Object Model (DOM) and the Simple API 

for XML version 2 (SAX2).  As described in [JDC], DOM parses the entire XML 

document into a Document  object in memory.  This object contains a tree of 

Nodes  which correspond to the elements between the tags of the XML 

representation.  These nodes can then be manipulated to extract or modify the 

data held in the XML document [JDC].  It is also possible to create new XML 

documents through the DOM API. 

 

SAX2 employs a very different method which is also described in [JDC].  As a 

SAX2 parser reads through an XML document it calls event handlers when 

certain tag types, for example those marked as the start (<..>) or the end (</..>), 

are encountered.  In order to implement a SAX2 parser, therefore, the user has to 

specify what should occur when these handlers are called.  SAX2 has no in-built 

means of creating XML documents as DOM does, and it does not “remember”  

what has been read by previous executions of the same event handler unless the 

                                                           
1 Both are available from http://java.sun.com/xml 
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user provides appropriate storage variables [JDC].  If the XML document is very 

complicated this method can be difficult, but SAX2 has the advantage over DOM 

in that it is faster and that it uses less memory.  This is because it does not have to 

create and maintain a representation of the entire document in memory. 

 

It was decided to use the SAX2 parsing method in Medusa.  As the complexity of 

a PNML document (defined as this different types of XML element which it can 

contains) is fairly low even for large Petri nets, the added complexity of JAXB 

and DOM out-weighed their benefits.  The lack of an in-built XML document 

generator in SAX2, a feature which is present in JAXB and DOM, was not a 

draw-back as generating a PNML description of a net from the Medusa 

representation can be accomplished without too much trouble using standard 

ASCII character-to-file writing techniques (see below).   

 

It must be recognised, however, that JAXB has much to recommend it, especially 

the ease with which objects can be created from XML documents and vice-versa.  

It suffers, however, from being an experimental technology which does not work 

under Windows.  This negates the platform-independence which Medusa enjoys 

as a Java application.  Also, it has to be written into the application from the 

beginning.   

 

 

4.2.2 XML Parsing in Medusa 

 

This comprises two parts: writing out files in XML and parsing them back in to 

recreate saved nets.  

 

From Figure 4.3 it will be seen that a PNML representation of a Petri net can be 

generated easily from the way in which they are described internally be Medusa.  

It is achieved simply by writing out ASCII characters to a file through a standard 

output stream, first of all describing all places (the contents of the pl aces 

Vector) then all transitions (the i mmedi at eTr ansi t i ons and 

t i medTr ansi t i ons Vectors) and finally all arcs (the ar cs  Vector).  The 
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attributes of each place, transition or arc correspond to the fields of the PNML in 

an obvious way.  The Medusa name of each place becomes its PNML "id", whilst 

the comments become the PNML "name".  Similarly, the location of each 

element stored by Medusa is written in the <posi t i on> tag.  The division of 

transitions in Medusa between two Vect or s , one for immediate and one for 

timed, does not create a problem even though a PNML document written in this 

manner will not describe the transitions in ascending numerical order.  All 

transitions are still defined before they are used in the descriptions of the arcs and 

so no problems arise. 

 

Parsing the data back in is slightly more complicated, however.  The SAX2 

method parses the document as it is read based on the contents of the tag which it 

is currently reading.  For example, when a <pl ace> tag is encountered, the XML 

parser calls the st ar t El ement ( )  handler.  The values stored in the XML are then 

read out as they are encountered and stored in appropriately named local 

variables of the parser.  When a </ pl ace> tag is encountered, signifying that the 

end of that place has been reached, the endEl ement ( )  handler is called and a new 

Pl ace object is created using the values from these variables.  The parser then 

continues through the document.  This method is safe as it can be guaranteed that 

well-formed PNML will not start the description of another Petri net node in the 

middle of another node description – for example, all the information needed to 

describe a place is always contained between a <pl ace> </ pl ace> set of tags 

and they are never interleaved.  This method has proved successful for retrieving 

complex models such as the Courier protocol as described in Chapter 6. 

 

 

4.3 Reflection: Loading and Running Modules 

 

Having described the use of XML in Medusa as a saved-file format, the 

mechanism by which user-designed modules are loaded and then executed is 

described.  This process makes use of the Java Reflection API which provides a 

mechanism by which another program can discover information about a Java 
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cl ass  which is not known until runtime.  As described in [CWH01], this 

information includes: 

 

• The class of an object.  

• The class’s modifiers, fields, methods, constructors, and superclasses.  

• Which constants and method declarations belong to an interface. 

 

Reflection also permits the user to manipulate classes and objects about which 

nothing is known until runtime.  This includes: 

  

• The creation of an instance of a class (an object).  

• Getting and setting the value of a field of the resulting object. 

• Invoking a method on that object [CWH01]  

 

Medusa uses these abilities of the Reflection API when it loads and runs 

modules.  As all modules must implement the Modul e interface the method which 

runs the module is known to Medusa at compile-time.  The name of the module’s 

constructor is not known, however, so this must be discovered before an instance 

of the module can be created. 

 

Figure 4.4: The Di al og in which the user selects which module to load. 
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The name of the module which the user wishes to load is selected, as detailed 

above, through a f i l e_chooser  Di al og as shown in Figure 4.4.  The value 

which is returned from this dialog is the name and location of the module file 

which includes the r unModul e( )  method.  It is passed as cl assName in to a 

function which uses Reflection to create an instance of this class.  The 

implementation in Medusa limits the modules to having a no-argument 

constructor, otherwise the process of loading a module would have become very 

complicated indeed.  This is not a problem, however, as the name of the XML 

file they must parse is specified in the Modul e interface which they implement.  

Any other information required to execute the model should be specified by the 

programmer or inferred from the contents of the PNML description. 

 

Once the module has been instantiated in the manner it is also run using 

Reflection.  The general scheme for invoking a method through Reflection, 

detailed in [CWH01] is: 

 

1) Create a Cl ass  object which corresponds to the class of the object which 

contains the method you wish to invoke. 

  

2) Create a Met hod object by invoking get Met hod on the Cl ass  object. The 

get Met hod method has two arguments: a St r i ng containing the method 

name, and an array of Cl ass  objects which correspond to the parameters 

of the method.  

 

3) Invoke the method by calling i nvoke. The i nvoke method has two 

arguments: an array of arguments to be passed to the invoked method and 

an object which class declares or inherits the method.  

 

The body of r unModul e( )  is written by the writer of the module and may call 

other functions in the Module in the normal manner.  Note that r unModul e( )  is 

parameterless and as such the arrays mentioned in 2) and 3) above will be empty. 
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The act i on_l i st ener  of the “Run Module”  item on the “Module”  menu is 

connected to a doAMet hod( )  method which is uses Reflection as detailed above 

to execute the methods of a module.  Clicking on “Run Module” , therefore, 

causes r unModul e( )  to be called and the function to run.  The Object which is 

passed in when it is called is an instantiated Modul e and the method name is 

r unModul e.   When r unModul e( )  is called by this mechanism, the module 

executes according to the code written in that function.   

 

The next two chapters detail the kinds of tasks which can be performed by this 

code.  First of all, the graph theory analysis shows how modules can be written to 

perform specific tasks themselves.  The DnamacaModule, however, shows how 

the extendable nature of Medusa allows it to interface with existing pieces of 

software.  This module also provides the opportunity to correct flaws in an 

existing tool which attempts to accomplish the same thing. 
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Chapter  5: Design and Implementation of a Module for  the Analysis of 

Place-Transition Nets Using Graph Theory 

 

 

5.1 Introduction 

 

The choice of modules to be implemented was chosen to demonstrate the 

possibilities offered by Medusa’s extensibility.  The graph theory analysis 

module was chosen as a topic as it demonstrates that Medusa’s functionality 

could be extended by the provision of purpose-written modules.  Such a module 

would allow the user to investigate exactly the attributes of the Petri net in which 

he was interested.  This chapter starts with an introduction to the mathematics of 

graph theory.  The analysis of the Petri net is accomplished through the analysis 

of its reachability set.  This section is included to ensure that the reader 

understands the principles on which this module functions.  The central 

implementation issue for this module was the choice of algorithm used to check 

the coverability graph for strongly connected components.  A number of options 

were available but it is felt that the one selected best suits the needs of this 

method of analysis.  In order to show that the implementation of the selected 

algorithm is correct, this chapter closes by comparing a set of correct results for a 

graph against those produced by the implementation. 

 

 

5.2 Proper ties of Petr i Nets Which Can Be Analysed Using Graph 

Theory 

 

One way in which the properties of a Petri net are often analysed is through the 

application of graph theory to their reachability sets.  The term ‘ reachability set’  

was defined informally in Chapter 2 as the set of all markings which are 

reachable from the initial marking, though a formal definition of it is given 

below.  There are numerous properties of Petri nets about which one may be 

interested.  For Place-Transition nets, the list below compiled from [BK95] 

illustrates the most common: 
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• boundedness.  A net is bounded if there is a finite limit on the 

number of tokens on every place.  Obviously, source (transitions 

which have no input places and can thus always fire) elements 

prevent a net from being both bound if it is live. 

• safeness is of interest if the places in a net represent conditions, 

and so it follows that the presence or absence of tokens represents 

these conditions as being satisfied or not.  A net is safe if there is 

at most one token on each place. 

• liveness concerns the firing of transitions.  If a net is live then no 

reachable marking exist such that a transition is never enabled 

again.  In the same way that sources prevent boundedness, sinks 

(places which have no outgoing arcs) prevent liveness in a 

bounded net. 

 

These properties can be formalised thus: 

 

Definition 5.1 Let PN =  (P,T,I−,I+,M0)  be a Place-Transition net  

• The reachability set of PN is defined by R(PN) := {M | M0 Y M} .  

If PN denotes an unmarked Place-Transition net of if we want to 

consider parts of the reachability set, the set of reachable 

markings for a given marking M Z'[�\�\^]`_,a�_�b%c(d-_�ae]gfih (PN, M) := 

{ M | M j M} .  Thus for a marked Place-Transition net we have 

R(PN) = R(PN, M0). 

• PN is a bounded Place-Transition net,  iff  ∀p ∈ P : ∃k ∈ 0 : ∀M 

∈ R(PN) : M(p) k k.  

PN is safe,  iff  ∀p ∈ P : ∀M ∈ R(PN) : M(p) lnm . 
• A transition t ∈ T is live,  iff  ∀M ∈ R(PN) : ∃M’ ∈ R(PN) : M o

M’ and M’ [t >. 

• PN is live,  iff  all transitions are live, i.e.  ∀t ∈ T, M ∈ R(PN) : 

∃M’ ∈ R(PN) : M p M’ and M’ [t >. 

• A marking M ∈ R(PN) is a home state,  iff  M’  ∈ R(PN) : M’ q
M. [BK95] 



 37

A necessary condition for a net to be live and bounded is that it is strongly 

connected.  Otherwise a net is said to be weakly connected.  Informally, it is said 

that two nodes, x and y, of a net are weakly connected if and only if x can be 

reached from y or y can be reached from x.  The nodes are strongly connected if 

and only if x can be reached from y and y can be reached from x.  As a Place-

Transition net can be treated as a directed graph, this can be formalised as 

follows: 

 

Definition 5.2 Let PN =  (P,T,I−,I+,M0)  be a Place-Transition net  

• Input places of transition t are defined as:  •t := { p ∈ P | I− (p, t) > 

0} , 

• Output places of transition t:  t• := { p ∈ P | I+ (p, t) > 0} ,   

• Input transitions of place p:  •p := { t ∈ T | I+ (p, t) > 0} , 

• Output transitions of place p:  p• := { t ∈ T | I− (p, t) > 0} , 

• F ⊆ (P x T) ∪ (T x P) given by F := { (x, y) | x, y ∈ P ∪ T : x ∈ •y}  

is called the flow relation  of PN. 

Let F*  denote the reflexive and transitive closure of F, i.e. x, y, z ∈ 

P ∪ T: 

a) (x, x) ∈ F*  

b) (x, y) ∈ F ⇒ (x, y) ∈ F*  

c) (x, y) ∈ F* and (y, z) ∈ F*  ⇒ (x, z) ∈ F*  

• PN is weakly connected  iff  x, y ∈ P ∪ T : xF*y  or  yF*x, 

• PN is strongly connected  iff  x, y ∈ P ∪ T : xF*y  and  yF*x. 

[BK95] 

 

 

5.2.1 Analysis of Place-Transition Nets Using Graph Theory 

 

There are two common ways in which the reachability set of a Place-Transition 

net can be drawn.  The first is as a reachability tree, whose nodes are the 

markings of the net.  Figures 5.1 and 5.2 show a Place-Transition net and its 

corresponding reachability tree. 
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Figure 5.1: A Place –Transition net. 
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(1,0,0) 
 

Figure 5.2: The reachability tree of the net in Figure 5.1. 
 

 

The process by which the reachability tree is constructed is described in [BK95].  

The starting node is the initial marking of the net.  From this, the directly 

reachable markings are added as leaves and their directly reachable markings are 

in turn calculated.  These are then added as further leaves and so on until a 

previously generated marking is encountered.   

 

The second format is as a reachability graph.  This is a direct transformation of a 

reachability tree achieved by deleting duplicate nodes and connecting the 

remainder up appropriately [BK95].  The reachability graph which corresponds to 

the reachability tree in Figure 5.2 is shown in Figure 5.3. 
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           t1 
      (1,0,0)             (0,1,0) 
          
            t3        t2    

              (0,0,1) 
 

Figure 5.3: The reachability graph of the net in Figure 5.1. 
 

 

The reachability graph of a bounded net like that shown in Figure 5.3 is relatively 

straightforward to generate but problems are encountered when trying to generate 

for unbounded nets as they are infinitely large.  To overcome this and make the 

generation of reachability graphs for unbounded nets possible, the symbol  is 

used to in texts such as [BK95] to represent the infinite marking on an unbounded 

place.  By using  and Algorithm 5.1, a finite representation of the reachability 

tree can be generated for both bounded and unbounded nets.  This is known as a 

coverability tree, and in the case of a bounded net is identical to that net’s 

reachability tree [BK95]. 

 

Algor ithm 5.1 to generate the coverability tree of a Place-Transition net: 

X := { M0}  // M0 is the root of the coverability tree 
while X r Ø do 
begin 
 
 Choose x ∈ X. 
 ∀t ∈ T : x[t > do 

create a new node x’  given by x[t > x’  and connect x and x’  by a 
directed arc labelled with t. 
Check ∀p ∈ P : 

If there exists a node y on the path from M0 to x’  with y stvuNw(x�y$z|{ }Q~���tvu { }�~E�0�(��x����:�:tvu { }�~��g� �  
X := { x | x is a leaf of the coverability tree generated so far, in x at least 
one transition is enabled and there is no non-terminal node y with y = x }  
 

end [BK95] 
 

 

The coverability tree can then be converted into a coverability graph in the same 

way as a reachability tree is converted into a reachability graph.  Analysis of this 
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coverability graph allows us to deduce the following things about the Place-

Transition net to which it belongs: 

 

• the net is bounded if and only if no node in its coverability tree is 

marked with the symbol  [BK95]. 

• if the net is bounded, it is live if and only if all transitions appear 

as a label in all final strongly connected components of the 

coverability graph.  A strongly connect component is final if there 

are no arcs which leave that component [BK95]. 

• if the net is bounded, a home state exists if and only if its 

coverability graph contains exactly one final strongly connected 

component.  It is not the case, however, that if a net is unbounded 

then it cannot have a home state [BK95]. 

 

One problem with graph-theory analysis is that the coverability graphs generated 

for even relatively simple nets can be very large – this is called the state space 

explosion problem in [BK95].  There exists a method which addresses this 

problem (invariant analysis) but it is beyond the scope of this project.  A module 

capable of performing invariant analysis on complex nets has been produced and 

full details of it are given in Chapter 7. 

 

 

5.2.2 Analysis of GSPNs Using Graph Theory 

 

The analysis of GSPNs using the theories outlined above is rendered difficult by 

the fact that such nets possess two forms of transitions.  As has been said, the 

firing of enabled immediate transitions has priority over that of timed transitions, 

which leads to the existence of vanishing and tangible markings (see Chapter 2).  

Is it impossible to generalise about the attributes of a GSPN from analysis of its 

underlying Place-Transition net, except to say that if the Place-Transition net is 

bounded then so to is the GSPN [BK95]. Due to these complications, the graph 

theory module is designed for the analysis of Place-Transition nets only. 
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5.3 Implementation of the Module 

 

The first step is to construct the coverability tree as per Algorithm 5.1.  The 

coverability tree must then be converted into a coverability graph.  Once this has 

been accomplished it can be analysed.  This analysis centres around the 

identification of the strongly connected components of the graph, a task for which 

there exist a number of common algorithms.  The following section will therefore 

concentrate on describing the selection of the algorithm which was adopted as 

this was the key issue faced. 

 

 

5.3.1 Analysis of the Coverability Graph 

 

The coverability graph is analysed to discover if the net is bounded and live and 

if the net has a home state.  This section will describe how such analysis is 

performed in this module.  Checking to see if the net is bounded is relatively 

simple.  As will be recalled, the net is bounded if no marking in the coverability 

graph contains the symbol .  This translates rather obviously into the 

pseudocode shown in Figure 5.4. 

 

pr i vat e bool ean i sBounded( )  {  
f or  ( ever y node i n t he cover abi l i t y gr aph)  {  

        f or  ( ever y pl ace i n t hat  node)  {  
           i f  ( t he mar ki ng on t hat  pl ace i s “ ” )  
              r et ur n f al se;  
         }  
      }  
      r et ur n t r ue;  
   }  
  
Figure 5.4: Pseudocode representation of the function for analysing if a net is 

bounded. 
 

 

Conducting the analysis necessary to check for the existence of the other two 

conditions is more involved, however.  As per the definition of the three 

conditions above, this analysis is only necessary if the net is bounded.  If the net 

is not bounded then analysis will terminate here.  Assuming the net is bounded, 

the strongly connected components of the coverability graph must be identified.  
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The coverability graph can be treated as a directed graph as defined in Definition 

5.3.   

 

Definition 5.3 a directed graph or digraph is a pair G = (V, E) where: 

• V is a set whose elements are called ver tices or nodes, 

• E is a set of ordered pairs of elements of V which are called edges, 

directed edges or arcs, 

• For an arc (v, w) in E, v is its tail and w is its head: (v, w) is 

represented in diagrams as v w and is written vw. [BG00] 

 

The classic algorithm for identifying strongly connected components in a directed 

graph was designed by R. E. Tarjan:  

 

Algor ithm 5.2 Tarjan’s algorithm to detect the strongly connected components 
of a directed graph G = (V, E) [NSS94] 
 
procedure VISIT(v); 
begin 
 root[v] := v; InComponent[v] := False; 
 PUSH(v, stack); 
 for each node w such that (v, w) ∈ E do begin 
  if w is not already visited then VISIT(w); 
  if not InComponent[w] then root[v] := MIN(root[v], root[w]) 
 end; 
 if root[v] = v then 
 repeat 
  w := POP(stack); 
  InComponent[w] := True; 
 until w = v 
end; 
 
//Main program 
begin  
 stack := ∅; 
 for each node v ∈ V do 
  if v is not already visited then VISIT(v) 
end. 

 

 

Tarjan’s algorithm applies a recursive function VISIT to every node in the graph 

which has not already had VISIT applied to it [NSS94].  The algorithm aims to 
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find the root of every strongly connected component in the graph.  The root of 

each strongly connected component is defined as the first node which VISIT 

enters in that component [NSS94].  To accomplish this the algorithm performs 

two interleaved traversals of the graph undergoing analysis [NSS94].  The first is 

a depth-first search of all edges [NSS94].  The second is accomplished using a 

stack on which each node is stored when it is discovered by the first traversal 

[NSS94].  When a root of a strongly connected component is found all of its 

descendants which are not part of a previously identified strongly connected 

component are marked as belonging to the root’s component [NSS94].  When the 

root of a component is exited all the nodes down to this root are popped off the 

stack and are taken as forming that component [NSS94]. 

  

There have been a number of proposed refinements of Tarjan’s algorithm, for 

example two are presented in [NSS94].  These focus on improving its efficiency 

by reducing the number of nodes stored on the stack during the second traversal 

and thus finding the strongly connected components faster.  The first of the 

refined algorithms does not use the stack when exploring strongly connected 

components which consist of only one node.  The second is a further refinement 

but is of little use in this particular application as it only stores the roots of the 

components and not the nodes which make them up.  This would make checking 

for liveness very hard.  For the purposes of this module, however, Tarjan’s 

original algorithm would be sufficient as the size of the coverability graph is 

constrained by the state-space explosion problem and so the improvements are 

unlikely to have too great an impact. 

 

There is also a variation on Tarjan’s algorithm by M. Sharir presented in [BG00].  

This takes an array of adjacency lists as its representation of a directed graph.  

Each vertex of the graph is assigned a unique integer identifier which is used as 

the index in an array of adjacency lists.  Each entry in the array is a linked list of 

integers which records to which vertices the vertex is connected.  This can 

perhaps be more easily understood when presented as in Figure 5.5. 
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Figure 5.5: A directed graph and its corresponding adjacency list representation 

[BG00]. 
 

 

This algorithm described in [BG00] is divided into two phases.  First of all, a 

depth-first search of the directed graph G represented as an array of adjacency 

lists is conducted and the vertices are pushed onto a stack as they are encountered 

[BG00].  Once this search is completed the algorithm moves into the second 

phase.  The transpose graph of G, denoted GT, is employed in the second phase. 

GT is formed by reversing the direction of every arc in G, which can be 

accomplished from the adjacency list structure of G [BG00].  A depth-first search 

of GT is then performed and from this the strongly connected components are 

identified [BG00].  Once again a stack is employed to accomplish this.  The 

strongly connected components are identified by the index of the vertex 

encountered by the algorithm in that component [BG00]. 

 

1

1 

2 

3 

4 

5 

6 

7 

2  

3  4

1  6

 

 

2  3  

4  5  7  

6  

2 

3 4 

5 6 7



 45

It was decided to select the algorithm which is presented in [BG00] because of 

the provision of extensive pseudocode and explanatory notes in that text.  This 

greatly aided implementation.  The improved versions of Tarjan’s algorithm 

presented in [NSS94] have much to recommend them, especially their improved 

efficiency over the other methods.  It is arguable, however, whether or not their 

improvements would be noticeable given the limited scale of the problems which 

this module, constrained as they are by state-space explosion, could be expected 

to address.  Furthermore, the algorithms are not expanded upon in too much 

detail and so implementation would have been more time consuming.   

 

 

5.3.2 Validation of the Implementation of the Chosen Algor ithm 

 

The implementation of this algorithm can be validated against an example 

provided in [BG00].  Consider the directed graph in Figure 5.6.  Its strongly 

connected components are (1,2,4,6), (5,7) and (3). 

 
 
 
 
 
 
 
 
 
 

Figure 5.6: A directed graph with strongly connected components [BG00]. 
 

 

The implementation outputs the identifier of each vertex along with the first 

vertex of that vertex’s strongly connected component.  The result generated is: 

 

 Ver t ex 1 i s i n t he same scc as ver t ex 2 
 Ver t ex 2 i s i n t he same scc as ver t ex 2 
 Ver t ex 3 i s i n t he same scc as ver t ex 3 
 Ver t ex 4 i s i n t he same scc as ver t ex 2 
 Ver t ex 5 i s i n t he same scc as ver t ex 5 
 Ver t ex 6 i s i n t he same scc as ver t ex 2 
 Ver t ex 7 i s i n t he same scc as ver t ex 5 
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2 
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It can be seen, therefore, that the implementation of the algorithm correctly 

identifies three strongly connected components consisting of vertices (1,2,4,6), 

(5,7) and (3).  In this case the first vertex of each component is 2, 5 and 3 

respectively.  This shows that the implementation used in the module is correct. 

 

 

5.3.3 Completing the Analysis 

 

Having settled upon the choice of the algorithm to identify which vertices belong 

to which strongly connected components, these components can now be analysed 

to check for liveness and the existence of home states.  This requires that final 

strongly connected components are identified from amongst the strongly 

connected components.  Recall that a final components is one which has no 

outgoing arcs.  The pseudocode for a function which checks if a component is 

final is given in Figure 5.7.  It assumes that the graph is defined in the adjacency 

list structure shown in Figure 5.5. 

 

 publ i c bool ean i sFi nal ( )  {  
  f or  ( ever y ver t ex i n t he component )  {  

i f  ( t he ver t ex i s  connect ed t o anot her  not  i n 
t he same component )  {  
 

/ / t hi s  i s  achi eved by compar i ng t he 
/ / ver t i ces i n t he ver t ex ’ s  adj acency l i s t  
/ / wi t h t hose ver t i ces known t o be i n t hi s 
/ / component  
 
r et ur n f al se;  

   }  
  }  
  r et ur n t r ue;  
 }   
 
Figure 5.7: Pseudocode for a function which checks if a strongly connected 
component is final. 
 

 

As a home state only exists if the coverability graph contains exactly one final 

strongly connected component, the existence of home states can be checked for 

by assessing each component using the routine in Figure 5.7 and recording how 
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many “ true”  values are returned.  If the number is not one, the net with that 

coverability graph does not have a home state. 

 

For a net to be live every transition must appear as a label in every final strongly 

connected component.  Using the routine in Figure 5.7 the final components are 

identified and analysed by the routine shown in Figure 5.8. 

 

 publ i c bool ean i sLi ve( )  {  
  f or  ( ever y f i nal  st r ongl y connect ed component )  {  
   Li st  t r ansi t i ons = new Li st ( ) ;  
   f or  ( ever y mar ki ng i n t he component )  {  
 

/ / r et r i eve t he t r ansi t i on whi ch f i r ed t o 
/ / pr oduce t he mar ki ng – t hi s i s  st or ed 
/ / when t he gr aph i s  const r uct ed 
 
t r ansi t i ons. add( t r ansi t i on. name) ;  

   }  
   / / compar e t he l i st  f or  t hi s component  wi t h a  

/ / pr e- gener at ed l i s t  of  al l  t r ansi t i on names 
 
i f  ( t her e i s a t r ansi t i on of  t he net  whi ch does 
not  appear  i n “ t r ansi t i ons” )  

    r et ur n f al se;  
}  

  r et ur n t r ue;  
 }  

 
Figure 5.8: Pseudocode representation of the function which checks if the 
coverability graph is that of a live Place-Transition net. 
 

 



 48

Chapter  6: Design and Implementation of a Module to Interface With 

Dnamaca 

 

 

6.1 Introduction 

 

DnamacaModule was selected as a topic to demonstrate that it is possible to 

design a module to allow Medusa to interface with a pre-existing piece of 

software.  This also presented the opportunity to correct a flaw in another Petri 

net editor (DaNAMiCS) which also produces output files in Dnamaca format, but 

not in a correct manner.  It was hoped to incorporate features lacking from 

DaNAMiCS as well, such as a front-end which would allow the user to specify 

exactly the performance measures which they wished to have analysed.  

 

Dnamaca is a Markov chain analyser written by Dr. William Knottenbelt capable 

of generating performance analysis results for GSPNs [KNO96].  The theory of 

Markov analysis is not covered here as it is not essential to the understanding of 

the design of DnamacaModule, but readers wishing to know more are directed to 

[KNO96], [KNO99] and [BK95].  Very broadly, Markov analysis deals with the 

states of a system, for example what the probability of it being in a certain state at 

some time is.  For Petri nets, the states of the system are the markings through 

which it passes when enabled transitions are fired.   

 

Dnamaca functions by parsing an input file containing a textual description of the 

net to be analysed into its internal representation, performing the analysis on this 

representation and producing an output file detailing the results.  The key issue 

was the design of a module which would render a Petri net produced in Medusa 

into an input file to be read and processed by Dnamaca.  DnamacaModule, 

therefore, is responsible for automatically generating a Dnamaca input file from 

the Petri net currently being edited in Medusa, allowing the user to add the 

performance measures desired, running Dnamaca itself and finally presenting the 

results back to the user.  The process can be summarised thus: 
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1) DnamacaModule parses the cur r ent . xml  file produced by Medusa 

2) From this, it automatically generates a description of the net in the model 

description format of Dnamaca. 

3) It then gives the user chance to add the performance measures to be 

analysed.  These and the model description are contained in a file called 

cur r ent . mod. 

4) Dnamaca is invoked by DnamacaModule with cur r ent . mod as its input 

file. 

5) The results produced by Dnamaca held in the cur r ent . mod. out  file are 

presented back to the user. 

 

This chapter comprises three main sections.  An overview of how nets are 

inputted into Dnamaca is given, including details of how DaNAMiCS is flawed.  

The implementation of DnamacaModule is then covered, including how this flaw 

was rectified and how invoking another command line program is done in Java.  

The success or otherwise of the implementation is assessed in the chapter which 

follows. 

 

6.2    Dnamaca Input Files 

 

This section shows how a Petri net is defined in an input file for Dnamaca.  An 

input file contains two sections: the first half describes the structure of the net 

(the model description) whilst the second details the attributes of the net which 

the user wishes to have analysed (the performance measures). 

 

 

6.2.1 Dnamaca Model Descr iptions 

 

As the Markov chain which underlies a GSPN may contain a very large number 

of states it would not be practical to describe each one of these individually 

[KNO99].  Instead, Dnamaca employs a high-level description which specifies 

the components of the system (the state description vector), the system’s initial 

state and the rules by which it moves between states [KNO99].  These correspond 
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respectively to the places which make up the net, the initial marking of these 

places and a description of each transition including the conditions under which it 

fires and the resulting state when it does [KNO99]. It is possible to write a 

program which generates such a description automatically when given a Petri net 

– indeed this is what the DaNAMiCS export function and DnamacaModule both 

do.  Figure 6.1 shows a simple Place-Transition net and its equivalent model 

description. 

 

                           
 
                 p1                                      t1         p2 

 
\ model {  

 
  \ st at evect or {  
   \ t ype{ shor t } { p1,  p2}  
  }  
 
  \ i ni t i al {  
   p1 = 1;  
   p2 = 0;  
  }  
 
  \ t r ansi t i on{ t 1} {  
   \ condi t i on{ p1 > 1}  
   \ act i on{  
    next - >p1 = p1 – 1;  
    next - >p2 = p2 + 1;  
   }  
   \ r at e{ 1. 0}  
  }  
 

}  
 
Figure 6.1: A Place–Transition net and its corresponding Dnamaca model 

description. 
 

 

The way in which a transition is described merits some explanation.  The 

condi t i on describes the state which the system must be in for this transition to 

be enabled.  It can be seen that it corresponds to the number of tokens which must 

be present on the transition’s input places to enable it.  The act i on describes the 

state which results from the transition firing in terms of the number of tokens 

which are created and destroyed on the transition’s output and input places. 
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It is in the action section that model descriptions generated automatically by 

DaNAMiCS can exhibit flaws.  Consider the net in Figure 6.2.  Notice that the 

arc connecting t1 and p1 is directed both ways, and that there is a token on p1 and 

as such t1 is enabled.  This means that t1 can always fire and when it does one 

token is destroyed on the transition’s input places and one is created on each of 

its output places.  As p1 is both the input and output place of t1, when the 

transition is fired the number of tokens on p1 does not change. 

 

 
 
 
                           p1                                               t1            

 
Figure 6.2: A net which would be described incorrectly by DaNAMiCS. 

 

 

The correct description for t1 would be: 

 
 \ t r ansi t i on{ t 1} {  
  \ condi t i on{ p1 > 1}  
  \ act i on{  

}  
  \ r at e{ 1. 0}  
 }  
 

Notice that the action description is empty.  This is because it describes the state 

which the system will be in after the transition fires, and as has been shown 

above the firing of t1 leaves the system’s state unchanged.  If the net is entered 

into DaNAMiCS and then exported as a Dnamaca model description, the 

following is produced: 

 

 \ t r ansi t i on{ t 1} {  
  \ condi t i on{ p1 > 1}  
  \ act i on{  
   next - >p1 = p1 – 1;  
   next - >p1 = p1 + 1;  

}  
  \ r at e{ 1. 0}  
 }  
 

This appears to be correct as it describes what occurs: a token is destroyed on p1 

and then another is created there.  Dnamaca, however, deals with the state which 

results from the firing of a transition and so expects a place to feature at most 
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once in the action description.  When it parses a description with a repeated place 

it only takes in the final one.  This means that if Dnamaca was given the 

description above it would interpret it as meaning that the firing of t1 increases 

the number of tokens on p1 by one each time. 

 

It is not hard to see how such an error could occur.  In most cases, considering the 

effects of firing a transition on first its input and then its output places would give 

correct results.  To ensure that the results are always valid, however, any attempt 

to generate a model description automatically must deal with the overall effect of 

firing a transition on the state of the system (that is to say, the markings on the 

places).  An approach which achieves this, and thus avoids replicating the 

mistake of DaNAMiCS, has been implemented in DnamacaModule and is 

detailed below. 

 

 

6.2.2 Dnamaca Performance Measures 

 

Unlike Dnamaca model descriptions, which can be generated automatically from 

a representation of a Petri net, the performance measure part of the input file must 

be supplied by the user.  Performance measures are either state measures or count 

measures.  State measures are used to indicate to the performance analyser the 

real expressions for which the user wishes to have results generated.  This 

includes measures such as the average number of tokens on a place [KNO99].  

They are described in the form: 

 

 \ st at emeasur e{ <i dent i f i er >} {  
\ est i mat or { <any combi nat i on of  “ mean” ,  “ var i ance” ,  

“ st ddev”  and “ devi at i on” >}  
  \ expr essi on{ <expr essi on t o be anal ysed>}  
 }  

 

Count measures are used to indicate in which rates of event occurrence the user is 

interested, for example the rate at which a transition fires and produces 

throughput [KNO99].  They are expressed thus: 
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 \ count measur e{ <i dent i f i er >} {  
  \ est i mat or { mean}  
  \ pr econdi t i on{ <a bool ean expr essi on>}  
  \ post condi t i on{ <a bool ean expr essi on>}  
 \ t r ansi t i on{ <ei t her  “ al l ”  or  a l i st  of  t hose 

r equi r ed>}  
 }  

 

It is the responsibility of the user to specify those which they desire.  In 

DaNAMiCS this is not possible as the whole Dnamaca input file is generated 

automatically with a set of default performance measures.  DnamacaModule, 

however, incorporates a mechanism which allows the user to specify the 

measures which they wish to have analysed through a series a GUIs.  This system 

is  detailed below. 

 

 

6.3 DnamacaModule 

 

Because performance measures are supplied by the user, they are not hard to 

accommodate.  The automatic generation of a correct model description is a far 

more involved process and it is on this that the bulk of this section will focus.  

DnamacaModule is much more than a textual generator as it not only creates the 

correct input file but also runs Dnamaca with this file and presents the user with 

the results produced.  How this invocation of another program is achieved is 

detailed below. 

 

The first thing which DnamacaModule must do is parse the cur r ent . xml  input 

file.  It accomplishes this by using the same SAX2 parser method as Medusa does 

to load saved nets.  DnamacaModule’s internal representation of a net is identical 

to Medusa’s (see Figure 3.1).  Medusa’s class structure was repeated as it could 

easily be applied to the task of generating Dnamaca input files, but functions such 

as those responsible for drawing the Petri net were unnecessary and were 

consequently deleted. 
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6.3.1 Model Descr iption Generation 

 

DnamacaModule utilises the incidence matrices of the net which is to be analysed 

to generate the model descriptions.  These matrices are also used in invariant 

analysis as described in [BK95].  There are three of these matrices: the backward 

incidence matrix (C-), the forward incidence matrix (C+) and the incidence matrix 

(C).  The matrices C- and C+ describe the incidence functions I- and I+ in matrix 

form. C- describes the number of tokens which are destroyed on each place for 

each transition, whilst C+ describes the number of tokens which are created 

[BK95].  For the Petri net in Figure 6.1, the corresponding matrices would be: 

 
C- =    1  C+ =   0 

                                                           0             1 
 

The incidence matrix C is the combination of C- and C+.  To be formal [BK95]: 

 

C = C+ - C- 

 

For example, the C matrix for the net in 6.1 would be: 

 
C =  -1 

+1 
 

The columns of the C matrix therefore describe the cumulative effect on the 

markings of all places created by the firing of a transition and it is this which 

DnamacaModule exploits.  It will be recalled that the problem with the existing 

implementation in DaNAMiCS is that it considers first the input places and then 

the output places, which can lead to incorrect results with bi-directed arcs.  It has 

already been said that the way to overcome this was to consider the overall effect 

of firing a transition when it is described, and the use of the C matrix permits this.  

This can be seen if the matrices for the net in Figure 6.2 are considered: 

 
C- =     1  C+ =    1  C =      0  
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The value of the corresponding C matrix reflects the fact that the cumulative 

effect of t1 firing is to leave the marking of p1 unchanged – the number of tokens 

changes by 0. 

 

The C matrix, therefore, provides an ideal mechanism for describing the overall 

effect of firing a transition and thus ensuring that bi-directed arcs are described 

correctly.  In order to exploit this, DnamacaModule first calculates the C- and C+ 

matrices and then subtract one from the other to find C.  All three matrices are 

represented as two-dimensional matrices in DnamacaModule’s Java code.  They 

are declared as: 

i nt [ ] [ ]  C = new i nt [ i] [ j]  

 

where i is the number of places in the system and j is the total a number of 

transitions (immediate and timed).  The relevant matrix is then passed into a 

routine which assigns the values based on the structure of the Petri net.  Figure 

6.3 shows the pseudo-code version of the function which calculates the C- matrix, 

but the routine which assigns C+ is identical save for the fact that it uses output 

places not input places. 

 
pr i vat e voi d cal cC- ( i nt [ ] [ ]  C- )  {  

f or  ( ever y t r ansi t i on tj )  {  
         f or  ( ever y pl ace pi )  {  

i f  ( pi  i s  an i nput  pl ace of  tj )  {  
C- [ i] [ j]  = wei ght  of  ar c f r om pi  t o  

tj ;  
            }  

el se {  
C- [ i] [ j]  = 0;  

             }  
          }  
       }  
     }  
 
 

Figure 6.3: The pseudocode of the function which calculates the C- matrix 
    

 

The calculation of C is then achieved by matrix subtraction.  A pseudocode 

representation of DnamacaModule’s code is shown in Figure 6.4. 
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pr i vat e voi d cal cC( i nt [ ] [ ]  C,  i nt [ ] [ ]  C+,  i nt [ ] [ ]  C- )  {  
f or  ( ever y pl ace pi )  {  

        f or  ( ever y t r ansi t i on tj )  {  
           C[ i] [ j]  = C+[ i] [ j]  -  C- [ i] [ j] ;  
        }  
      }  
 }  
 

 
Figure 6.4: The pseudocode representation of the algorithm for calculating the C 

matrix. 
 

 

Once C has been calculated it can be used directly in the creation of the Dnamaca 

input file.  When describing transition tj, a “next->pi”  line is only written out if 

the value of (pi, tj) in C, which corresponds to the (i th, j th) element, is not equal to 

zero.  Otherwise, the firing of transition tj does not affect the marking of pi and so 

nothing needs to be described.  The pseudocode representation of the Java code 

for implementing this is shown in Figure 6.5. 

 
 f or  ( ever y t r ansi t i on tj )  {  

f or  ( ever y pl ace pi )  {  
        i f ( C[ i] [ j] >0)  {  

wr i t e( “ next - >pi  = pi  +”  C[ i] [ j] ) ;  
}  

            el se i f ( C[ i] [ j] <0)  {  
wr i t e( “ next - >pi  = pi  –“  abs( C[ i] [ j] ) ) ;  

           }  
}  

 }  
 

 
Figure 6.5: The pseudocode representation of the way in which DnamacaModule 

writes transition definitions. 
 

 

Note that the abs expression in the el se i f  statement is necessary to return the 

absolute value of C[i][j] as it will have a negative value and subtracting a 

negative number has the same effect as addition.   
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6.3.2 Performance Measures 

 

Once the model description has been generated, DnamacaModule must collect 

the performance measures from the user.  This process is achieved through a 

number of Swing Di al ogs  with fields corresponding to the elements which make 

up the measures (see Section 6.2.2).  Figure 6.6 shows the form which these 

Di al ogs take. 

  

 

  

Figure 6.6 Screenshot of the Di al ogs  through which the user inputs the desired 
performance measures. 

 

 

The fields in which the expressions are specified by the user are JText Fi el ds, 

the contents of which can be retrieved as a St r i ng and written to a file.  When 

the OK button is clicked on the Dnamaca Fr ont - End, the model description and 

any performance measures are written to a Dnamaca input file called 

cur r ent . mod. 
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6.3.3 How DnamacaModule Invokes Dnamaca and Displays Results 

 

When the model description has been generated and the performance measures 

specified, DnamacaModule automatically runs Dnamaca with the completed 

input file.  It is worth explaining how this is accomplished.  Dnamaca is a 

command-line program which is invoked with: 

 

dnamaca <i nput  f i l ename> 

 

Java offers a ready-made mechanism through which programs can invoke 

command-line applications, the intricacies of which are explained fully in 

[DAC00].  In order to run Dnamaca from DnamacaModule it is necessary first to 

retrieve the existing Java Runtime Environment as reference to a Runt i me object 

[DAC00].  It is then possible to use the Runt i me. exec( St r i ng)  method to run 

Dnamaca where the command shown above is passed in as the St r i ng variable 

[DAC00].  As the file produced by DnamacaModule is always called 

cur r ent . mod this is a straightforward matter. 

 

As [DAC00] explains, however, there are a number of pit-falls to this apparently 

simple procedure.  Most importantly, the output streams produced by the program 

being invoked by Runt i me. exec( )  must be handled and the invoked process’s 

return value passed back to the invoking program or else the invoking program 

will hang.  The invoked program will generate two output streams: one on the 

standard output stream for its results and one on the standard error stream if any 

problems occur.  The output streams of the invoked program are treated as input 

streams by the invoker and so they must be redirected to the correct output 

streams again by the invoking program [DAC00].   

 

DnamacaModule handles the Dnamaca’s standard output stream first and only 

handles the error stream when Dnamaca stops writing to the standard stream.  

This is one of the methods described in [DAC00], but [DAC00] also details how 

threads can be used to read both output streams concurrently.  This solution has 

much to commend it in terms of elegance but it was felt that the extra complexity 

which was involved, especially the introduction of threads into a program with a 
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Swing GUI (which is by definition not thread-safe [CWH01]), was greater than 

the possible benefits.  The solution adopted handles all the output generated by 

Dnamaca in the correct way as the error stream is only written to when an error 

occurs, in which case no more writing to the standard output stream takes place. 

The final task which DnamacaModule must perform is the presentation of the 

generated results back to the user.  Dnamaca writes the results both to the screen 

and to a file.  This file’s name is always of the form <i nput f i l ename>. mod. out , 

so the results from an execution of DnamacaModule are always to be found in 

cur r ent . mod. out .  In order to display them to the user this file is read and 

displayed in a Swing Di al og as shown in  Figure 6.7. 

 

Figure 6.7: A screenshot showing how DnamacaModule presents the results 
generated by Dnamaca to the user 

 

 

Having detailed the production of two modules a consideration of how successful 

the project has been must be undertaken.  For DnamacaModule, this means 

assessing how accurate the model description which it generates are.  This 

process will also assess Medusa’s architecture because the model descriptions 

produced by DnamacaModule depend entirely on the description of the Petri net 

entered into Medusa.  Ultimately, the aim of this validation process is to 
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demonstrate whether or not the main aim of the production of an extensible editor 

has been achieved.  This is the topic of the following chapter. 
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Chapter  7: Validation of Concept and Design Through Analysis of 

Generated Results 

 

 

7.1 Introduction 

 

The aim of this chapter is to attempt to validate the design of Medusa and the 

modules.  This will be achieved by using the modules to analyse models with 

documented results and comparing the results produced.  If the results match then 

it can be concluded that the implementations are correct, whilst if they differ the 

implementations are flawed.  This process will also evaluate how successful this 

project has been in achieving its aim of producing an extendable tool.   

 

A module designed as part of [MW01] will be used in this process.  This module 

was designed to be compatible with Medusa as it implements the same interface 

and takes PNML as an input file.  It should, therefore, be able to be loaded and 

run by Medusa without problems and generate correct results.  If this proves to be 

the case it can be concluded that the project has achieved its aim and that it is 

possible to extend Medusa knowing only the details of how it interfaces with its 

modules. 

 

 

7.2 Graph Theory Analysis Module  

 

The models chosen to validate this module were taken from [BK95].  The first to 

be tried was the simple net shown in Figure 7.2 with the corresponding 

reachability graph shown in Figure 7.3.  The module calculated the reachability 

graph and from this identified that the net was bounded as no marking contained 

the symbol.  Furthermore, the strongly connected component algorithm 

detected that there was only one such component and that this was final.  This 

meant that the net had a home state.  The net was correctly described as live as 

every transition appears as a label in that component.  Figure 7.4 shows a 

screenshot of the module returning these results. 
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    t1      p2      t3 

 
          p1            
  

                                          t2      p3      t4 

 
 

Figure 7.2: A Place-Transition net [BK95]. 
 
 
 

        (1,0,0) 
           t3              t4  
     t1      t2 

 
                                       (0,1,0)            (0,0,1) 

 
Figure 7.3: The reachability graph of the Place-Transition net in Figure 7.2 

[BK95]. 
 

 
Figure 7.4: Screenshot of Medusa analysing the net in Figure 7.2 with the graph 

theory module. 
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The module also described correctly the complex unbounded net shown in Figure 

7.5.  In this case as the net is unbounded the module does not attempt to check for 

liveness or the existence of a home state.  It does, however, construct the 

reachability graph and recognise that the net is unbounded from this.  Again, 

Figure 7.6 shows a screenshot of Medusa and the results returned by the module. 

 

 

 

 

 

 
 

   t4 

 
 
 

        t2              p2   

 
          p1               t3 

    
 
       p3 
 
 
 
            t1                    t5 
 
 
 
          p4 
 
 

Figure 7.5: A complex, unbounded Place-Transition net [BK95]. 

 



 64

 
 
 
Figure 7.6: Screenshot of Medusa analysing the net in Figure 7.5 with the graph 

theory module. 
 

 

7.3 DnamacaModule 

 

It was decided to use the GSPN model of the Courier communications protocol 

shown in Figure 7.1 to validate DnamacaModule as it is a complex model which 

contains a bi-directed arc.  DnamacaModule was designed specifically to describe 

these correctly as DaNAMiCS cannot.  There are also a set of performance 

results readily available to which those generated by DnamacaModule can be 

compared.  If the results are the same it can be concluded that DnamacaModule 

generates valid model descriptions and also that Medusa is capable of editing 

complex nets successfully. 

 

The Courier model was entered into Medusa from the diagram reproduced in 

Figure 7.1.  DnamacaModule was then loaded and run with the necessary 

performance measures entered through its GUI. 
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Figure 7.1 Diagram of the GSPN model of the Courier protocol [KNO99].  

 

 

The performance measures used are identical to those in [KNO99].  The data 
�<�����
���:���������g������� ���(�$�<���������:���Q���(���+�E���U ���¡i¢

y the throughput of t21.  The Pxxxx 

measures determine task utilisation, for example Ptransp1 is the probability that p12  
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is marked.  Similarly, Ptransp1 is defined for p32, Psess1 and Psess2 for p6 and p41, and 

Psend and Precv for p1 and p46 [KNO96]. 

 

The results generated by DnamacaModule are reproduced in Table 7.1 along with 

the published results from [KNO99].  The variable m (the marking on p17) was 

fixed at 1 to conform with that used to generate the known results, whilst n (the 

marking on p14) was tried at 1 and 2.  Unfortunately, although the published 

results cover the range 1 £ n ¤¦¥(§�¨+©�ªe«�¬
­,®�¯�ª�°²±U¨+³´¬�µ�¨<©�ª¶­�¬Q·(ª�¯H®�¸�ª�¹Qª�º�¨�ª�·C¨<©�ª
generation of results for n > 2 by Dnamaca. 

 

As can be seen, the results generated from DnamacaModule are in complete 

agreement with the published results.  From this it can be concluded that it is 

possible to edit complex nets using Medusa and that DnamacaModule generates 

correct model definitions from nets entered in Medusa even if that net contains 

bi-directed arcs. 

 

 n = 1 n = 2   n = 1 n = 2 
 74.3467 120.372   74.3467 120.372 

Psend 0.01011 0.01637  Psend 0.01011 0.01637 
Precv 0.98141 0.96991  Precv 0.98141 0.96991 
Psess1 0.00848 0.01372  Psess1 0.00848 0.01372 
Psess2 0.92610 0.88029  Psess2 0.92610 0.88029 
Ptransp1 0.78558 0.65285  Ptransp1 0.78558 0.65285 
Ptransp2 0.78871 0.65790  Ptransp2 0.78871 0.65790 

 
Table 7.1: Published results (left) and those generated from the model description 
produced by DnamacaModule (right).1 
 

 

7.4 Running a User-Designed Module 

 

The aim of this project was to produce an editor which could be extended by the 

user without access to its source-code.  In order truly to validate the success of 

the implementation, therefore, it is necessary to test if this has been achieved.  A 

                                                           
1 Results from C.M. Woodside and Y. Li., ‘Performance Petri net analysis of communication 
protocol software by delay-equivalent aggregation’  in Proceedings of the 4th International 
Workshop on Petri nets and Performance Models (Melbourne, Australia: IEEE Computer Society 
Press, 2nd-5th December 1999,) pp. 64-73, reproduced in [KNO99]. 
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suitable module was produced as part of another MSc Computing Science project 

[MW01].   It had been agreed prior to the beginning of the projects that they 

should implement the same interface so that modules could be swapped between 

them in order to validate the concept of both.  Other than this there was no 

discussion as to the internal designs of either the tools or the modules which both 

projects produced.  This replicates the constraints under which modules would be 

produced in the real world – the user would not be intimately familiar with the 

internal works of Medusa in the way that its author is.   

 

The module designed as part of [MW01] is capable of performing invariant 

analysis on a Petri net.  Invariant analysis can be used for solving problems such 

as the Reader-Writer problem presented in [BK95].  Consider the Place-

Transition net in Figure 7.6.  This represents a system with several processes 

reading and writing a shared file.  Readers never modify the file and so more than 

one may access it at the same time.  Writers, however, do modify the file and so 

when they access it all other readers and writers must not be allowed to access the 

file.  The synchronisation required could be achieved by a semaphore.  A possible 

solution may be to initialise the semaphore with a value of n and every time a 

reader wanted access it would decrement it by 1 and then increment it by 1 when 

it finished.  A writer, however, would decrement and increment the semaphore by 

n. Invariant analysis can be used to prove whether or not this solution is correct. 

 

 
         p1    p4 
 

     

            t1              t3 
 
        n 
 
     p2          p5   
 
         p3       n 
            
          t2                                          t4 

 

 
Figure 7.6: Petri net representation of the Reader-Writer problem [BK95]. 

 

s 

 

t 

 n 
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In Figure 7.6, the number of tokens on p1 and p2 represent the number of readers 

which are not reading and reading respectively.  Similarly, p4 and p5 model the 

same conditions for the writers whilst p3 represents the semaphore.  The results of 

the invariant analysis published in [BK95] give the following P-invariants for the 

markings on the various places.  Recall that M(pi) is the marking on place pi and 

that an invariant is something which holds true for all possible states of the 

system. 

   M(p1) + M(p2) = s 

   M(p4) + M(p5) = t 

   M(p2) + M(p3) + nM(p5) = n, ∀M ∈ R(PN) 

 

This means that the sum of the markings on p1 and p2 is always equal to s no 

matter which state the system is in.  This means that the total number of readers is 

constant.  Similarly, the total number of writers is always t [BK95].  The third 

equation can be solved to yield the following: 

 

a) M(p2) »½¼ ⇒ M(p5) = 0 

b) M(p5) ¾½¿ ⇒ M(p2) = 0 

c) M(p5) À½Á Â0ÃHÄ'Å²Æ:Ç  
 

These show that if a reader is reading, no writer is writing and if a writer is 

writing no reader is reading (a) and b) respectively) [BK95].  It also demonstrates 

that there is at most one writer writing (c)) [BK95].  From this it can be 

concluded that the solution adopted is correct. 

 

The screenshot in Figure 7.7 shows the results of performing this invariant 

analysis on the Reader-Writer problem where s = 3, t = 2 and n =2.  The 

equations which are produced (displayed in the lower left-hand box) are as 

follows: 

   M(p1) + M(p2) = 3 

   M(p2) + M(p3) + 2M(p5) = 2 

   M(p4) + M(p5) = 2 
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These are in exact accordance with the published results for the net.  

Furthermore, the module correctly identifies the net as being bound.  In order to 

verify that this one result is not an anomaly, the procedure of running the module 

with Medusa was repeated a number of times and the values of s, t and n were 

varied.  For s = 1, t = 1 and n = 1: 

 

   M(p1) + M(p2) = 1 

   M(p2) + M(p3) + 1M(p5) = 1 

   M(p4) + M(p5) = 1 

 

Likewise for s = 2, t = 2 and n = 2: 

 

   M(p1) + M(p2) = 2 

   M(p2) + M(p3) + 2M(p5) = 2 

   M(p4) + M(p5) = 2 

 

And finally for s = 3, t = 3 and n 3: 

 

   M(p1) + M(p2) = 3 

   M(p2) + M(p3) + 3M(p5) = 3 

   M(p4) + M(p5) = 3 

 

In all cases these correspond to the published values for this problem. 
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Figure 7.7: A screenshot showing Medusa running the Invariant Analysis Module 
on the Reader-Writer problem. 

 

 

7.5 Conclusion 

 

The results generated by the combination of Medusa and the three modules used 

all comply with known results.  From this a number of things can be concluded.  

Firstly, this shows that the specific implementations of each module are correct.  

Secondly, Medusa is capable of being used to edit complex GSPNs like the 

Courier model successfully and the representation which it produces is sound.  If 

this was not the case then errors would be expected in the results produced.  As 

the modules have successfully generated results when used with other editors 

then, if errors had occurred, Medusa would have been at fault.   

 

More broadly, however, the success of operating all three modules with Medusa 

shows that this project has succeeded in its aim of producing an extensible Petri 
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net tool.  Particularly gratifying is the success of the invariant analysis tool as this 

was designed with knowledge of only PNML and the Modul e interface.  That it 

functioned correctly when run by Medusa shows that it is possible to design 

modules for the tool when only the way in which it interfaces with these modules 

is known.  This was what the project set out to achieve. 
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Chapter  8: Conclusion 

 

 

8.1 Conclusions 

 

This report has covered the production of an extensible Petri net editor/animator 

called Medusa.  The aim of this project was to improve upon existing Petri net 

tools by creating a piece of software whose functionality could be extended 

through the addition of modules by users.  It was hoped that this could be 

achieved even if the user was given only the specifications of the Modul e 

interface and details of the XML format used to describe saved nets.  

Furthermore, the design of a new Petri net tool created the opportunity to 

incorporate new features which are not present in other tools as well as to correct 

known mistakes in other implementations. 

 

The architecture of Medusa has been described.  The animator incorporates a 

novel feature in its ability to perform backwards animation, which allows the user 

to step backwards through the sequence of fired transitions.  This feature is not 

present in the animators of existing tools like DaNAMiCS. 

 

Medusa is capable of loading nets designed in other tools and also saving nets in 

a format which can be read by other tools.  This is achieved through the use of 

the Petri Net Markup Language, an XML-based language which is being 

developed as a proposed standard for the description of Petri nets by software 

tools.  The fact that it is a standard and not a proprietary format promotes the 

extensibility of Medusa by allowing it to be used in conjunction with other tools 

which support PNML. 

 

The results from the three modules described in this report validate the design of 

Medusa and of the respective modules.  The results obtained from 

DnamacaModule’s analysis of the Courier protocol are particularly pleasing.  

Courier is a very complicated model with forty-five places and thirty-four 

transitions but Medusa proved capable of being used to create correctly such a 

model.  DnamacaModule successfully converted this model into a representation 
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which could be analysed by Dnamaca even though the model contained a bi-

directed arc.  This shows that the flaw exhibited by DaNAMiCS when attempting 

to describe such arcs has been avoided in this implementation.  The performance 

results for the Courier protocol obtained from an execution of DnamacaModule 

correspond exactly to the published figures.  This demonstrates how Medusa can 

interface successfully with existing tools through specially designed modules. 

 

The results from the graph theory analysis module show that it is possible to 

write a self-contained module capable of performing complex analysis on nets 

created with Medusa.  Once again, the results for the problems analysed were the 

same as those which had been published.  This validates the implementation of 

the mathematical theories used in this module.  It also demonstrates that the 

implementation of Medusa is sound. 

 

The final proof of the success of Medusa as an extensible piece of software came 

when a module designed by another party was successfully loaded and run.  This 

showed that the main aim of this project has been achieved: namely that Medusa 

should be capable of running modules designed by users with no knowledge of 

Medusa’s internal architecture.  The only information shared between the two 

projects was details of the XML and Reflection interface. 

 

 

8.2 Oppor tunities for  Future Work 

 

Thanks to Medusa’s extensibility, the scope for future work is enormous as any 

number of modules could be written to perform various functions.  There are, 

however, certain additions which could be made to the Medusa editor/animator in 

order to increase the functionality which it offers. 

 

There are a number of other Petri net formalisms which could be added to 

Medusa, for example Coloured Petri Nets.  It will be recalled that they offer no 

extra expressive power over the two types of net currently used in Medusa but 

they can reduce the complexity of large nets.  Similarly, a version of Medusa 

which was capable of representing Queuing Petri Nets would be a valuable 
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extension.  To achieve either of these, however, would require a major rewrite of 

the source-code of Medusa as it could not be achieved through a module. 

 

Medusa could also be extended to support subnets.  Like Coloured Petri Nets, 

subnets add no expressive power but they do simplify the graphical 

representation of the net.  This is achieved by replacing sections of the net with 

“black boxes”  which are themselves Petri nets but whose internal workings are 

not visible to the user.  An implementation which allowed subnets to be imported 

from various files into a single Petri net would be particularly useful. 

 

Medusa’s animator could also be improved upon.  The basic functionality of 

forwards and backwards animation is sound but some form of automatic 

animation could be added.  This could allow the user to enter a sequence of 

transitions which they wished to see fired and then have the animator display that 

sequence.  An even greater bonus would be if the animator could be connected to 

the extension mechanism in some way so that results from the execution of a 

module could be displayed.  This would be particularly effective if the module 

was one which identified a sequence of transitions which lead to deadlock as the 

analyser could then display that trace in graphical form. 
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Appendix A: Medusa User  Guide 

 

 

1 Unzip the medusa. z i p archive.  This will create a folder labelled medusa 

containing everything necessary to run Medusa. 

 

2 Go into the medusa directory.  To run Medusa in Windows, type 

medusa. bat  in a command prompt or double-click on the medusa. bat  

file.  To run Medusa in Linux, type . / medusa. ksh in  a console window. 

 

3 Medusa will start, displaying a window like this: 
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4 What do the buttons do? 

 
 

 

 

 
   = Add a place 
   
   = Add an immediate transition 
 
   = Add a timed transition 
 
   = Add an arc 
 
   = Add a token to a place 
 
   = Remove a token from a place 
  
   = Rotate a transition 
 
   = Delete an element of the Petri net 
 
   = Move an element 
   
   = Edit an element’s attributes  
 
   = Start animating 
 
   = Step back one firing 
 
   = Stop animating 
    

5 To add a place, click on the appropriate button.  Then click on the 

location where you wish to place it.  Transitions can be added in the same 

way.  To add an arc, click and hold on the node you wish it to start from 

and release over the node where you wish it to end.  This is also the 

mechanism used to move an element. 
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6 Tokens can be added and removed from a place by pressing the 

appropriate button and then clicking repeatedly on a place until the correct 

number appears. 

 

7 To edit the attributes of a place, first click the “Edit an element’s 

attributes” button.  Then click over the element you wish to modify.  A 

box will be displayed showing that element’s attributes and this allows 

you to change them using the keyboard.  An example is shown below. 

 

 

 

8 To begin animating, click on the “Start animator”  button.  Transitions 

eligible to be fired will be highlighted in red.  When one is clicked on, it 

will fire and the marking on the net will change accordingly.  To undo a 

firing, click the “Step back one firing”  button (black triangle).  To stop 

animating and restore the initial marking, click the “Stop animator”  button 

(black square). 
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9 To save the net, select “Save as XML”  from the “File”  menu.  A dialog 

will be displayed allowing you to select the name and location of the 

saved file: 

 

 

 

10 To open a saved file, select “Open XML File”  from the “File”  menu.  

Again, a dialog will open allowing you to select the file to load. 

 

11 To show or remove the grid, select “Toggle Grid”  from the “Edit”  menu.  

To enable/disable the automatic snapping of elements to the grid, select 

“Toggle Snap to Grid”  from the “Edit”  menu. 

 

12 To load a module, select “Load Module”  from the “Module”  menu.  A 

dialog will open as when opening a saved net.  Select the module from 

this.  To then run it, select “Run” from the “Module”  menu.  The module 

will then execute and prompt for any further input. 

 

13 To remove a previously loaded module select “Remove”  from the 

“Module”  menu. 
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