Department of Computing, Imperial College London
University of London

Investigating Portlet Technology
for Interactive Analytics

Michelle Anne Osmond

A thesis submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy of the University of London and the
Diploma of Imperial College

August 2007

I hereby declare that this thesis entitled “Investigating Portlet
Technology for Interactive Analytics” is entirely my own work,
except where specifically acknowledged in the text.

Michelle Osmond August 2007

Abstract

This thesis examines and extends portlet technology as an interactive web interface for
performing scientific research with the Discovery Net e-Science infrastructure. This
approach allows services from different sources to be integrated as components within

a single unified web interface, known as a Portal.

Some of the restrictions of developing portlets become particularly significant in a
research context. We discuss a number of the issues encountered while developing the
Discovery Net portlets to the portlet standard, JSR-168, and our solutions. The two

most significant issues encountered are as follows:

1. A research portal needs to provide customised and continually updated
information and tools to its users, but traditional portlets are focused on
providing a single type of service. Therefore to add new features to the portal,
the administrator must obtain and install new portlets.

2. The lack of inter-portlet communication (IPC) in the current Portlet
specification (JSR-168) hinders development of standards-compliant portlets.
IPC is critical for analytical ‘“dashboard’-style sites where each portlet is treated

as a component which may interact with others.

We discuss in detail our research to provide solutions for these issues by enhancing

and extending the use of portlet technology, in particular concerning;

1. Discovery Net’'s web deployment system, which offers a flexible solution by
providing access to a modifiable store of workflows, with support for
customised web interfaces and visualisation of results, all without any
intervention by the portal administrator.

2. Our development of a JSR-168-compliant IPC library.

To illustrate and drive this work, several example applications have been examined
and supported, including Discovery Net e-Science demonstrations and a production-

quality Translational Medicine Portal.

Acknowledgements

Thanks first to my supervisors, Yike Guo and John Hassard, for their continual support

and encouragement, and for introducing me to such fascinating subject areas.

This project has been truly multidisciplinary, and I am very grateful to all the people in
the collaborating research groups and companies who have offered help, advice and
criticism. Particular thanks go to Moustafa Ghanem, Anthony Rowe, Jameel Syed, Vasa

Curéin, Anton Oleynikov, Patrick Wendel, and Mark Richards.

My gratitude also to ICSF for letting me look after the library, and to my family and
friends, especially Michael Wright, for always being there.

Contents

Chapter 1. INtroduction..........ccciviviiuiiiiniiiiiiiic e 11
1.1 ATINIS oo 13
1.2 Main ContribUtions.........ccovviiiiiiiiniiiniiiiiiccccccc e 14
1.3 TeChNOIOZY ...ucvivieiiiiiiiiii 14
1.4 Thesis SLIUCLUTEcooviviiiiiiiic e 14

Chapter 2. Background...........ccccooviiiiiiiiiiiiiiii e 17
2.1 WED SeIVICES ...ttt 18
2.2 e-Science and the Grid...........cocoeeiiiiiiiiiii 19
2.3 DiscOVEry INet.....c.ouiiiii 20
2.4 Java Servlets and JSP ...ttt e 22
2.5 Virtual Learning/Research Environments.............ccccccooviiiinniiinniiinniniinn. 23
2.6 Portals and Portlets...........ccocoviiiiiiiiiiiiiiii 24
2.7 CONCIUSION ..ot 37

Chapter 3. Analytical Portal Designcccooveviiiiiiniiiiiiiciccccccccc 38
3.1 General advantages of Web Portals...........cccccooiviiiiininiiiniiiiccne 38
3.2 Requirements of an Analytical Portalccooiiniiiinice, 40
3.3 Functional requirements for the Discovery Net Portal.............ccceeiicinininnnn. 42
3.4 Non-functional requirements for the Discovery Net Portalc.cccceueenee. 43
3.5 Discovery Net portlets.........cocooiiiiiiiiiniiiniiiiiis 44
3.6 Portlet Message FIOWccciiiiiiiiiniiiiiiicciccccc e 54
3.7 Software constraints for the Discovery Net portal...........cccccoeveviiiiiiinnnnnne. 56
3.8 Choice of Portal implementationcccceueiiviniiiiiniiiiiiciicceee 57
3.9 Business Intelligence demonstration.............cccooeeveiiiiiinieiiininieecccccccccce, 62
3.10 COoNCIUSION ... 67

Chapter 4. Web Interfaces to Research Services ..., 68
4.1 Creating web Interfaces...........cccovueueiririiiiininiiiireeceeeeee e 69
4.2 Discovery Net Service Deploymentccccccciviviiiiiniiiinniniiiciecne 75
4.3 Discovery Net's demonstration scientific applications..........ccccccevvueicniccnnnne 93
4.4 Using multiple SEIVICESccccciviiuiiiiiiiiiiiiiiiiicccc e 106
4.5 CONCIUSION ...ttt 108

Chapter 5. Inter-portlet communicationccocoevvieiiieieicieieicccccc 109

5.1 Portal-specific IPC Implementations............ccccceuvueueicinirieinnnieiineccneeeens 111

5.2 Implementation approaches for JSR-168-compliant IPC...........ccccccevvvriniinnns 118

5.3 Design of a JSR-168-compliant IPC library..........cccccceuvrueinnnieccinneicniicceens 129

5.4 Page Navigation ..o 141

5.5 Limitations of the IPC ibraryc.cccoeeiiiiiiiie, 142

5.6 CONCIUSION ... 143

Chapter 6. Translational Medicine Portal: A Case Study of a Complex Portal........ 145

6.1 Aims of the Portal ... 145

6.2 Design Challenges............cccreiiiiiiiii s 146

6.3 AJAX (Asynchronous JavaScript And XML)cccccooeviiiiiiiiniiiiiiiiiciicen, 150

6.4 Portlets developed ... 152

6.5 The Translational Medicine Portalcccooiiiiiniiiiice 167

0.6 CONCIUSION ...ttt s 171

Chapter 7. Limitations and Improvements for J[SR-168 portlet technology 173

7.1 CONEOXt ..ttt 173

7.2 Limitations in Portal Design..........ccccccociviviiiiiiniiiiniiiiiicccccce 175

7.3 Limitations in Portlet Implementation............cccoccceviiiniiininniiiiiiiicce, 176

7.4 Considerations for the next Portlet Specification ... 196

7.5 CONCIUSION ...ttt 197

Chapter 8. Conclusions and Future Work..........cccccccocvviiiniiinnniiiiiiiccs 198

8.1 Future Developments ... 201

8.2 Future WOrK.......ccououiiiiiiii s 203

8.3 Final Thoughts.......ccciiiiiiiiiiiiiiiccc e 204

GLOSSATY ..ttt 205

BibLIOGIaphccvoviiiiiiiiiiciccc s 207
Appendices

Al. Functions for retrieving Portlet IDs...........ccccoooviiiiiiiicc, 218

A2. Discovery Net Papers.........ooiiiiiiiiiiiiici s 220

List of Tables

Table 3.1: Feature Comparison of Traditional and Analytical Portals.cccccccceucneneee. 42
Table 3.2: Message inputs and outputs of Discovery Net Portlets............cccccccvvriinnnnne. 55

Table 3.3: Portal Comparison examining suitability for hosting Discovery Net portlets.

.. 60
Table 5.1: Comparison of Portal-specific implementations of Inter-portlet
Communication (2005)ceceerererrtinenterertetese ettt ettt ettt sbe st sbe et et et e s saeeaeen 117
Table 5.2: Approaches to storing IPC configuration: GUI presentation......................... 134
Table 5.3: Approaches to storing IPC configuration: storage location.ccccoeuu.e. 134
List of Figures
Figure 2.1: Discovery Net SOftware.ccccoovovioiiiiiiiiiiicccccs 21
Figure 2.2: Overview of Discovery Net functionalityccoceeveeiniiinnniiiniccnnen 21
Figure 2.3: "MY Yahoo.......ccccviiiiiiiiiiiiiicci e 26
Figure 2.4: Portal architecture OVerview. ..o 28
Figure 2.5: Elements of a Portal Page............ccccoeiiiiiiiiiiniiiiiiiiicccccccce, 30
Figure 2.6: Example portal page request SeqUeNCeccceveveveieecccccccceee 32
Figure 2.7: Portlet appliCations.c.cciviviiiiiniiiiiiiciciccecec e 35
Figure 2.8: Example portal directory treeccoviiiviniiiininiiiiniiicicccnecccces 36
Figure 3.1: Service Portlet ... 45
Figure 3.2: Discovery Net Portal architecture.............coooeveiiiii 47
Figure 3.3: Service Index POrtletcccooiiiiiiiiiiniiicceecceee e 49
Figure 3.4: Tasks POrtlet ..o 50
Figure 3.5: Userspace Index Portlet..............coooiiiiiiic 51
Figure 3.6: Userspace Item Viewer Portlet, showing a table item..........c.cccoovvvvnnn 52
Figure 3.7: Message flow between Discovery Net Portlets.ccocveinniicinnccnnnnnn. 55
Figure 3.8: Oracle Business Intelligence portlet and Oracle Spatialccoeueuiennnee. 63
Figure 3.9: Oracle Business Intelligence Portlets............ccococoviviiniiininniccccccce, 64

7

Figure 3.10: Oracle Business Intelligence portlets and Discovery Net services.............. 65
Figure 3.11: Business Intelligence WOrkflowcccoooveieiiiiiiiiiiiic 65
Figure 3.12: Decision support with Discovery Net servicesccccoccvevrreicinrccncnnnnen. 66
Figure 4.1: European Bioinformatics Institute online servicesccccoceeueurirnrucnnnnee. 70
Figure 4.2: Partial WSDL of an EBI web service............ccccoviiiiniiinniiiiiinicciniccce, 72
Figure 4.3: Generic SOAP client ... 73
Figure 4.4: Comparing approaches to service description by Discovery Net and

StANAATAS. ..o s 74
Figure 4.5: Black-box deployment of a Discovery Net workflowccccccccevviiiiinnnnnn. 76
Figure 4.6: Deployment Strategiesccooevvviviiieininieiiieiiccceccc s 76
Figure 4.7: Form presentation of basic property types.........cccoeeevevreennnecenennccnnennens 79
Figure 4.8: JavaScript-enhanced form propertiescccccecvviiviniiinnniiinicccen, 80
Figure 4.9: Applet fOrm properties ... 80

Figure 4.10: Rendering and submission of a service form (Discovery Net Portal version
2.0) sttt 82
Figure 4.11: Modified procedure for rendering custom parameters(Discovery Net
Portal VErSion 3.0) ...cc.eeeruerieieieirieeieetestert ettt ettt ettt sttt et be b naen 83
Figure 4.12: Display of arbitrary file types in the portal............cccooooeiiii 85
Figure 4.13: Using browser plugins to display resultsccocooecnniinnniinncccnnnnen 86
Figure 4.14: Result display using appletscccccvviiiiniiininiiiiiicincccccces 86
Figure 4.15: HTML-formatted result displayccccccceovvniiiiiiniiiniiiiiccce, 87
Figure 4.16: Display of tabular datacccoovovvioiiiiiiiii 88
Figure 4.17: Custom layout of a service fOrmc.cocecceeviriininninicininccrcceeeeccee 89
Figure 4.18: The Deployment Layout Editor..........ccoeiiviiiiininiiiiiiiiccicccce, 90
Figure 4.19: Creating a wizard-style service layoutccccoceevvvniiiiiininiiiiiiccccce, 91
Figure 4.20: Wizard-style service layout in the portal ..o 92
Figure 4.21: GUSTO sensor network architecture.cccccooiiviinininiiiini, 94
Figure 4.22: Sensor clusters ShOwn on a Map........cccceeeiviviiiinininiininieineceeccenes 94
Figure 4.23: GISViz visualisationcccocoiiviiiiiiiiniiiiiiccccces 95
Figure 4.24: Snapshots of GISViz animationcccoceeveeieieieieiciccccccccccce 96
Figure 4.25: A GUSTO service for retrieving pollution dataccccccceevviicinncccnnnee. 97

8

Figure 4.26: A GUSTO service for retrieving scatter plots..........ccccoeiiviniiiniiicnnnne. 98

Figure 4.27: Comparison of protein profiles with a mirror plot.........ccccoovvinnnnnn. 100
Figure 4.28: Visualisations of GM scenario results deployed in the portal 101
Figure 4.29: The GISViz applet deployed in the portalccccoeiiiiiiiiiniiiiniicne. 102
Figure 4.30: Two source images used for earthquake analysiscccccoeveeverriccnnnnee. 103
Figure 4.31: The Earthquake application in the portal.............cccoooeiiiiii 105
Figure 4.32: Discovery Net service INStancesccccocovveiiiniiininiiiiiiiiiicnceens 106
Figure 5.1: Scenario: communication between two portletscccoeeieviiinninnenne. 109
Figure 5.2: Message board model for IPC............ccccooiiiiiininicceecce, 122
Figure 5.3: Simple IPC using a shared session attribute. ... 125
Figure 5.4: Cross-context IPCccoiiiiiiiiiiiii e 126
Figure 5.5: IBM WebSphere's portlet "wiring" toolcccoceeivviiiiiniiinniiiiiicne, 128
Figure 5.6: Oracle Portal's page editing modeccoovviviiviiiniiniiiiiiecccccce, 128
Figure 5.7: A newly-added portlet reading an existing messageccccocevevvvrvrvrennnne. 131
Figure 5.8: Abstraction of message NAmMES..........cccccvvuvueuiuinirieieinineieireeceeeeeeeeereneaes 133
Figure 5.9: Dynamically-generated IPC configuration forms...........ccccoceevnieinnnnnnnnnee. 136
Figure 5.10: UML diagram of the IPC Librarycccccccecivviiiinniininiiiinnccccne, 137
Figure 5.11: Concrete implementations.cccocoeveieieieieieieiciciccccccccee 138
Figure 5.12: Code fragment showing the use of the IPC librarycccccccvvveiinnncnee. 139
Figure 5.13: IPC library modulesccccoeuiiiiiiiiiininiiiiiiniiiiiccieccececeneneaes 141
Figure 6.1: Oracle DiSCOVETETcccuvuiuiiiiniiiiiiiiiiiiicccc s 147
Figure 6.2: Oracle DiSCOVeTer (2)......cccoiuiiniiiiiiiiiiiiiiiiciciecc s 148
Figure 6.3: Overview of the Windber Translational Medicine portal............ccccccoeueneeee. 149
Figure 6.4: Interactions on a normal web page (not using AJAX).......cccccceevviivinnncnne. 150
Figure 6.5: Interactions on a web page using AJAX........cccccoovvnininninnsecceccceeee, 151
Figure 6.6: The OLAP DIOWSETccciiiiiiiiie et 153
Figure 6.7: Graphical display of rows in the OLAP browser..........ccccoceeverrrcervrunncnne. 154
Figure 6.8: Configuration of rows and columns in the OLAP browser.ccccucu..... 155
Figure 6.9: Retrieval of raw data from the OLAP browserccccovuvuiiiinniinninninne 156
Figure 6.10: The OLAP browser with a categorical columncccoooviiiinnnnnn 156
Figure 6.11: Defining and displaying a row hierarchy in the OLAP browser............... 158

9

Figure 6.12: Multiple levels of row expansions, governed by the row hierarchy......... 159
Figure 6.13: Binning management interface..............cocoeueeieieieieicccccccccccccce 161
Figure 6.14: The wizard for creating or editing binnings.ccccccceevvrevinnniinnnenne. 161
Figure 6.15: Manual customisation of numerical bins..........ccccoviiiiniiiinniiinncne. 162
Figure 6.16: Manual customisation of categorical bins...........cccocoeveveiiiiiiicccccce, 162
Figure 6.17: The binning Wizard.ccccoooiviiiiniiiiiiis 163
Figure 6.18: Patient Sets portlet, allowing sets to be saved, edited and deleted........... 165
Figure 6.19: Patient Sets portlet, allowing expansion and selection of sets................... 165
Figure 6.20: The Patient Viewer portlet ..., 166
Figure 6.21: The OLAP BIOWSET PAZEcovuviiiiiiiieieieieicie e 167
Figure 6.22: The BiNNing Pagecccccveueiriririeinirieiciineeecirececireeee e 168
Figure 6.23: A Patient Viewer page, allowing users to specify a patient ID to view.... 169
Figure 6.24: A Patient VIEWer Page ..ot 169
Figure 6.25: A WOTKEIOW PAZecuovrvieiiiiiii s 170

10

Introduction

Chapter 1. Introduction

The modern researcher makes extensive use of personal computers to do their work,
using both 'office' software and domain-specific programs. A growing number also use
remote computational resources to perform specialised tasks - from using a service
provided through a form on a website, to submitting jobs through the command line to

a Grid cluster.

Remote computational services offer many benefits: the end user does not need to deal
with installation, specialised hardware, administration or maintenance, or even
understand their details. Indeed, when the remote service being offered is resource
intensive, e.g. a large database, it would be quite impractical to install it locally on
every client machine. Remote services are thus economical, with a single installation
able to serve many users over a wide geographical area, allowing users to roam
between locations and computers without losing access to their data or software tools.
With broadband internet connections becoming ubiquitous even in the home, latency
and network bottlenecks have become less of a concern, except for services with high

data volume or extremely high demand.

The increasing use of remote services has highlighted the value of user-friendly
interfaces which reduce or eliminate the need for specialised training. One of the most
popular methods of accessing such services currently is through a web browser: many
users are both familiar and comfortable with existing web paradigms such as online
shopping and internet banking, both of which provide user-oriented and robust
interfaces to back-end systems. Acceptance of the web browser’s role in accessing
services in everyday life is increasing: for example according to one UK survey, 38% of
people were planning to do some of their 2005 Christmas shopping online, compared

to only 22% in 2001051,

11

Introduction

In contrast, access to services for scientific research is regularly through remote shell
input or custom client programs (for example, MDL's CrossFire Commander
softwarel®”l for querying the CrossFire Beilstein organic chemistry databasel’®®). It
remains to be seen to what extent these methods of access will be replaced by the web,
as the capabilities of a browser-based interface are generally inferior to those that can
be offered by a custom client program. Nevertheless, the process has already begun; to
continue the previous example, MDL has recently developed a rich web interface,

DiscoveryGatel’], as an alternative method of accessing the Beilstein database.

Web portals are sites which gather together many services, often on the same page, for
quick and convenient access. A typical portal today, such as My Yahoo®, will offer
users a personalisable "home page" which can contain many fragments of content
(‘portlets’) showing for example news, entertainment, weather reports or stock quotes.
Portals are also used in business intranets, where they can offer consistent and
centralised access to business services, and more recently, business process
management!’””. However, the portal concept is also being applied in the scientific
research community, as project websites develop which provide access to the collection
of research data or services hosted by the project (e.g. the NIST Data Gateway!'%,
which provides access to many of its scientific and technical databases through both

web interfaces and purchasable local software versions).

These research portals may be available to the public or only to authorised users, and
may be based on bespoke code or upon an existing ‘portal’ solution such as
GridSphere”. They may concentrate on providing access to services owned and
hosted by the organisation running the portal, or they may act more as a convenient
aggregation point, collecting or integrating interfaces to many remote third party
services (e.g. Indiana University's Bioinformatics Portal® which provides guidance
and services to its researchers, or BioTeam's iNquiryl”, a commercial system
combining a cluster and a portal for hosting and accessing in-house life science
services). In this thesis, we continue this progression and consider the potential of web

portals as the primary method of access to research services.

12

Introduction

1.1 Aims

The core of this thesis concerns the use of portlet technology in a web portal for

scientific research.

We address three main issues:

1. The requirements of a web portal intended for scientific research.
2. The suitability of the JSR-168 Portlet specification for research portals.
3. Methods for allowing interaction with research services through a web

interface.

We review the ways in which a web portal can be used to provide access to
computational services, and how this changes the research portal’s focus and
requirements compared to more traditional web portals. We illustrate these differences
with the design of a new portal for the Discovery Net!®17 project at Imperial College

London.

We also assess the use of the JSR-168 Portlet Specification®l for developing portal
components. We discuss the benefits and limitations of the standard, show how these
affect the design of portlets for research services, and provide alternative solutions and
workarounds where necessary. In particular, we present a portable, standards-
compliant library for inter-portlet communication (IPC), a practical solution to one of
the more significant (and internally acknowledged) omissions of the JSR-168

specification.

Finally, we introduce the problem of managing and presenting web interfaces to a
dynamic pool of research services, and outline Discovery Net's approach to the
specification and automatic generation of rich, user-friendly web interfaces. Discovery
Net provides tools to bring together the data and analysis components which make up
a larger task, describing the whole process as a "workflow". These workflows are the

research services, which can then be made accessible via the web.

13

Introduction

1.2 Main Contributions

1. Analysis of the requirements for a Research Portal, illustrated by our
development of Discovery Net portlets and their use in a number of demo
applications, most notably a Translational Medicine Portal.

2. Development of a JSR-168-compliant library for inter-portlet communication.

3. Evaluation of the strengths and weaknesses of JSR-168, resulting in advice and
solutions for portlet developers, and suggestions for the next portlet

specification, JSR-286.

1.3 Technology

The Discovery Net software is a server-client system for workflow editing and
execution (Chapter 2). Both server and client are built using Java J2EE[", running on
JBoss Application Server 3.2.4%. The system has been commercialised by InforSense
Ltd. as InforSense KDE! ("Knowledge Discovery Environment"). The work described
in this thesis has been done using KDE versions from 1.9.2 (2003) through to 3.0 (2006).
Although this thesis will refer to "Discovery Net" software, this is usually

interchangeable with "InforSense KDE".

The new Discovery Net portal discussed in this thesis was developed using existing
JSR-168-compliant portal implementations. Early development used Apache Plutol®,
which is part of the Apache Portals project, and is the reference implementation of the
Java Portlet Specification (JSR-168). For later development and final integration with
Discovery Net, Apache Jetspeed 1.61%1 was used. The selection of Jetspeed 1.6 from a

range of candidates is discussed in Chapter 3.

1.4 Thesis Structure

Chapter 1. Introduction: Introduction to the problem and an overview of the thesis.

Chapter 2. Background: Background information on e-Science and the Grid, web

services, Discovery Net, portals, portlets and virtual learning environments.

14

Introduction

Chapter 3. Analytical Portal Design: We discuss how the aims and thus technical
requirements of an Analytical or Research portal differ from those of a more traditional
portal. We apply this to the design of the Discovery Net Portal, and outline the process
of converting the existing Java servlet-based!” portal to a Java portlet solution. We
compare several available portal implementations to determine which ones best fit our
needs, and end with a demonstration of a portal which combines third-party Oracle

Business Intelligence portlets with Discovery Net services.

Chapter 4. Web Interfaces to Research Services: We describe methods of dynamically-
generating web interfaces to remote services, and explain the benefits and problems
with these different approaches. Discovery Net's solution for "web deployment" of
workflows is described, including the process of encapsulating workflows, and the
necessity of providing feature-rich, customisable service interfaces to satisfy user
demands and expectations. We illustrate the possible variety of services using

Discovery Net’s demonstration scientific applications.

Chapter 5. Inter-Portlet Communication (IPC): We introduce the topic of IPC and
show how it is implemented in different portals. We then describe the design and
development of our JSR-168-compliant IPC library: one of the main contributions of

this thesis.

Chapter 6. Translational Medicine Portal: A Case Study of a Complex Portal: The
work on IPC and Discovery Net portlets is brought together with a real-world
example: a portal for translational medicine developed for the Windber Research

Institute.

Chapter 7. Limitations and Improvements for JSR-168/WSRP 1.0 Portlet technology:
As a result of our experiences, we discuss the limitations of using JSR-168 portlets, and
describe some solutions to common problems. Finally, we highlight a list of features

for consideration in the next portlet specification.

Chapter 8. Conclusion and Future Work.

15

Introduction

Appendices

Al. Retrieving a Portlet Window ID: Example code illustrating some of the methods
described in Chapter 7.
A2. Discovery Net Papers: We include for convenience some conference papers which
give further details on some of the projects discussed in this thesis.
1. Sensor Grids for Air Pollution Monitoring: A paper on Discovery Net's GUSTO
scenario, from the All Hands Meeting 2004152
2. Distributed BioSensor systems for GM Crop Monitoring: A paper on Discovery
Net's GM Crop scenario, from the All Hands Meeting 200411,
3. Adopting and Extending Portlet Technologies for e-Science Workflow Deployment: A
paper on the limitations of JSR-168 presented at the All Hands Meeting 2005155,

16

Background

Chapter 2. Background

The continuing advances in computer technologies are having a profound impact on
the way people live their lives. In particular, the wide adoption of the internet and ever
increasing processing power have led to new ways of conducting business and doing

scientific research.

However, the demands we put upon computers easily keep pace with or exceed their
improving capabilities. The network infrastructure needs to support future data- and
processing-intensive experiments, for example the distribution, storage and analysis of
the data from the Large Hadron Collider at CERN, due to start up in 2007°.. As data in
all scientific fields continues to accumulate rapidly, the methods for marking it up with
semantic metadata and searching through it will also become increasingly important,

hence work on the Semantic Web(144175] and the Semantic Grid[128130],

The initiative to develop internet technologies to satisfy this demand has been given
the name 'e-Science' in the UKP, and the proposed architecture to support it is called
the Grid!"*!l. This includes everything from the mechanics of data storage and transfer,
security, computational cluster management and task submission, to semantic service
registration and discovery. "Web Services"'l are one of the core technologies,
providing a standard, platform-neutral communication method between computer
systems using SOAP!.. Our project, "Discovery Net"177], is part of the UK e-Science
Programmel® and has developed an infrastructure for scientific analysis focusing on
several research application demonstrations. The Discovery Net software allows
scientists to build and execute 'workflows', flexibly combining analysis and data
components to perform parameterisable tasks. This thesis concentrates on the ability to
‘deploy’ these workflows to the web, providing a user-friendly web interface to execute

the analysis workflow and inspect its results.

17

Background

Web interfaces are increasingly commonly used to access computational services. With
the Discovery Net system, we need to be able to provide access to a dynamic, ever-
growing pool of deployed services. Software for creating web portals (e.g. PHP-Nuke,
Apache Jetspeed®]) provides a base for managing and presenting website content by
bringing multiple component portlets together to make up a single page. Portals can
allow users (as well as site administrators) to customise page layouts and modify
portlet preferences to fit their own interests. We will be considering the use of such
web portals as a solution for finding and accessing Discovery Net services, and
allowing users to personalise their pages for quick access to the services and data

which they use most frequently.

More detailed descriptions follow for each of these base technologies. A review of
specific methods for creating web interfaces to services is also given later, at the

beginning of Chapter 4.

2.1 Web Services

The term "Web Services" covers a range of open and platform-neutral standards

allowing direct communication between programs across a network.

Simple Object Access Protocol (SOAP)!” is the communication protocol most often
used, and WSDL (Web Services Description Language)® is used for programmatic
description of the service interface. WSDL describes what functions are available to
call, and how to call them, but does not include semantic information to aid human
comprehension of what the parameters or methods are for. Web services can be
indexed and found using registries based on the UDDI (Universal Description,
Discovery, and Integration)®’ standard from OASIS (Organization for the

Advancement of Structured Information Standards).

Further advanced standards and specifications build upon this base, for example
extended descriptions of service interfaces can be written using languages such as
OWL-SI (previously DAML-S), a web service ontology based upon OWL (Web
Ontology Language), and security can be added using the OASIS standard WS-

Security13l,

18

Background

These common, XML-based standards allow flexible integration of web services into
existing systems, reducing the technical effort required both in programming access to
web services and in supporting heterogeneous platforms (many code libraries are
available, e.g. Apache Axisl®l for Java and C++, and SOAP::Litel"8l for Perl, while there is
integral support in Microsoft's NET with ASP.NET web services®l). Current and
legacy systems can also be wrapped, exposing them for easy access through web

service interfaces.

Web services have been adopted by many communities in recent years, in particular in
business and research, to provide various forms of remote functionality such as

database access, submitting data, and computational services.

2.2 e-Science and the Grid

"e-Science is about global collaboration in key areas of science, and the next generation
of infrastructure that will enable it.” - John Taylor, Director General of the Research
Councils, OST (CCLRC e-Science Centre)!36!

The infrastructure for e-Science (the Grid) will allow scientists anywhere in the world
to access and store terabytes of data, control remote instruments, perform processing-
intensive distributed analysis and data mining, use and combine remote services, and
interact with colleagues using shared visualisations. For practical use and widespread
adoption, the technology must also provide secure, manageable, auditable and

dependable access to resources.

Grid middleware is software which smoothes over the heterogeneity in these large
scale systems, e.g. in terms of hardware, network protocols and security systems,
providing a standardised interface to the users. The de facto standard middleware is the
Globus Toolkit!'®], developed by the Globus Alliance!"?l. Globus provides resource and
information management, job execution and monitoring, and security. Another
commonly used piece of software is Condor®, a cycle-stealing distributed execution
environment which can be used in combination with Globus to manage jobs. Sun's N1

Grid Engine (formerly Sun Grid Engine)'®! is another cluster/job management engine.

19

Background

The Globus Toolkit version 3 introduced the Open Grid Services Infrastructure
(OGSI)"1, which presents grid resources as services using an adaptation of the Web
Services model. Grid services may be persistent or transient (created on demand by
service factories), and as each user of the service is likely to be accessing their own
personal instance of the service, grid services maintain state information. Globus, IBM
and HP then developed the Web Service Resource Framework (WSRF)!4150 which
takes many of the concepts and structures from OGSI and applies them as new layers
of the web services infrastructure, effectively providing stateful web services by using
‘resource’ web services to hold data. These new layers® make use of the WS-

Addressing!"l specification for addressing messages to web services, and include:

« WS-Notification for publication of messages, subscription, and triggers.
« WS-ResourceProperties for storage, update and retrieval of service data.

« WS-ResourceLifetime for management of resources.

WSREF is used instead of OGSI in version 4 of the Globus Toolkit!™**! (April 2005).

2.3 Discovery Net

Discovery Netl*1251771 is a workflow-based grid computing platform developed at
Imperial College London, and commercialised by InforSense Ltd. as InforSense KDE
(Knowledge Discovery Environment)”. It provides user-friendly access to data pre-
processing, analysis and mining components (Figure 2.1), allowing scientists to build
and execute reusable workflows for data mining and decision support. It also provides
a range of visualisers for inspecting data. New components can be written in Java and

plugged in to provide custom domain functionality.

Discovery Net uses a standalone server which manages data storage and workflow
execution. The Discovery Net Java Client can be installed on user machines, or
launched across the network using Java Web Start®], and provides a user interface for
accessing the userspace (file storage area), and editing and executing workflows
(Figure 2.2). Discovery Net workflows may alternatively be accessed as web services,
through custom APIs, or through the Discovery Net Web Portal (which is based on

Java Servlets, which are described in Section 2.4).

20

Fie Edt Resources View Tools Help

User's

Dr@fEERga - Xhx bR ELR[26) o

Background

Resources

|

Image Segmentation Analysis

Workspace
(file area)

Userspace [| Taslk Manager
= B Userspace: #idema@Iocakhost: 1099
= @) demo

[Geonhazard
\@%Q\smaps

GM_Roystan

1 6UsTO

Citemp

A iris

= fE) services
3 pema

= [Earth Sciences
Geohazard Arrow Generation
[Geohazard Shift Analysis result
5 mage Segmentation Analysis
& Image Shift Calculation
| Geohazard Arrow Generation

Available
Analysis
Components

B

arrt
) Actions

View Input Image

image Visualiser (JAT)

Description.

Image Loader (JAl
g[camgu] ¢)\..,Q‘ fey
Deplayable Image Expart View Deploya,
{Cached]

Properties
Mame
Image path
Threshold

Image Visualiser (JJ

Image Segmentation
Cached]

o)

Deployable Image Expol

Components

% Impart-Export
Preprocess
Lt alization
Statistic

Association
C 1

. Clustering

Conﬁguration Fid murtivariate

< m > Save to Userspace v

Deployment
panel

| (popup windows)

Result
visualisation

)

Properties Editor [Image Segmentation] Image Segmentation

Parameters (x| |Input [| Interaction (] | output (<] |Cache %1 |History (] | CRISP-DM (1 | Notes

Mare

EATTAYSS

I [
of an analysis [T7 """
node

» ChemSense

Visualization

Hello Nodegroup

Seed ¥ 0
Connecii] ~
Threshold

Workflow
construction
area

6] ode status 0K fl~

Tasks pending: 0 Tasks running: 0

Figure 2.1: Discovery Net software, based upon Inforsense KDE, in use. The

environment provides per-user file management (top left), analysis components

(bottom left), and workflow composition and execution (right).

Scientific Data
Files
Databases
Instrument Data

Applications
KDE components
Custom programs
Web/Grid Services

Execution
Result Storage
Work history
Visualisations

Workflows
Authoring
Storage

Discovery Net
Client / Server

Deployment

Web Interface

Web Services
3" party access

e e e e e e e e e —— — —— —— —

Figure 2.2: Overview of Discovery Net functionality

21

Background

Discovery Net demonstrates its grid-based data mining platform with respect to a
particular set of testbed applications, in collaboration with a number of other research
groups in Imperial and companies. These applications are further discussed in Chapter

4.

2.4 Java Servlets and JSP

Java Servlet!®l and JSP (Java Server Pages)!? technology allows web developers to
create 'active' or server-generated web pages in a similar way to that allowed by other
web server technologies like Perl, PHP and ASP. The Java base allows for easy
integration with existing J2EE components and the use of any Java libraries. Servlets
are compiled Java classes which receive requests from a client (usually a web browser)
and generate and send a response (the HTML contents of the web page). JSPs allow
developers to use a hybrid syntax where HTML may be mixed with Java code or
special 'tags', and are compiled on-the-fly to a servlet by the server upon receiving a
request. In development, JSPs are closer to scripting languages like PHP, and are well-

suited for modification by non-coders (e.g. the style-designers of a page).

Servlets are a well-established technology, and there are many libraries and tools
available to make life easier for servlet developers. For example, when developing a
servlet page, the servlet code is often split up into multiple parts: first, the request is
processed by the servlet, which does any intensive processing (business methods) and
data retrieval, and is then passed on to a JSP, which is lightweight and serves mainly to
generate the page layout and display the data. This adoption of the Model-View-
Controller pattern! is commonly seen, and there are a number of toolkits available to
allow such structured code design over an entire site, as well as to simplify and
standardise universal requirements such as processing input forms and dealing with

page flows (e.g. Apache Strutsl®?, JavaServer Faces??, Jakarta Tapestry*”l).

A web site will be typically made up of a collection of servlets, JSPs, and static
resources such as HTML files, images, and other binary files such as Adobe PDFs.
Often it will also access a separately-managed database for dynamic information. The

collection of resources - servlets, JSPs and other files, but not the database - will be

22

Background

gathered together in a common location as a named web application (often abbreviated
to webapp) on the J2EE server. A single server may host many web applications, and
ensures that each operates without interfering with the others - this allows new
webapps to be added in without affecting existing ones, so that one server can host
many sites (‘applications’), e.g. at a web hosting company. Thus, a webapp is typically
self-contained, and interaction or communication between webapps is not usually
expected or encouraged. As we will see however, the portlet model challenges this

convention.

2.5 Virtual Learning/ Research Environments

One of Discovery Net's aims is to provide a common environment for performing and
sharing the results of research within a "virtual organisation", with an emphasis on
ease of use and collaborative work. This is a growing field which is often referred to as
"Virtual Research Environments" (VREs) or "Virtual Learning Environments" (VLEs).
End-users typically interact with the VRE through a web portal. This topic has been the
subject of several recent research programs and workshops, many of which supply
useful summaries and examples of projects in the field (e.g. from JISC0126164166] JK e-

Sciencel'531651 and GGF!12133]),

There are a number of projects aiming to provide software solutions - usually
implemented as academic web portals, for easy access by students and researchers.
While the interfaces and presentation chosen vary, these projects have the common
theme of trying to make the use and management of distributed, shared resources as
transparent and intuitive to use as possible. They also usually include collaboration
tools such as forums and chat systems. There is an overlap in functionality between
VREs and VLEs: the latter additionally include modules for course content
management and publication, and other course-related features such as online tests,
timetables and coursework submission systems. However, the research aspect of
providing access to computational services is less well supported by generic tools,

typically requiring custom programming for each institution.

WebCT®l is an example of a commercial web portal used in educational environments.
JA-SIG's uPortal®! provides a higher-education-focused, JSR-168-compliant portal
23

Background

solution, which has the advantage that third party portlets - for example Grid portlets
from the NMI's Open Grid Computing Environments (OGCE) project!®’], or indeed
Discovery Net portlets - can be plugged into the provided portal with minimal effort.
Others, such as Groove Virtual Officel®! (recently acquired by Microsoft) and
GRENADE!' (a grid-enabled Linux KDE desktop), are focusing on tearing down the
basic user perception of grid resources as being remote and requiring special client
software or web portals to access: instead they provide access to remote data and

services by "grid-enabling" the existing desktop environment.

There are many real-world education and research portals in use, both project
demonstrators and production portals. The UK’s National Grid Servicel' (NGS)
allows access to its computational and data services through a web portal running the
JSR-168-compliant Stringbeans portal”®l. An alternative portall’® to the NGS, using the
P-GRADE Grid portal'], provides more advanced tools for job submission and
management, again based on JSR-168. The European INFN Production Grid®, used by
several international physics projects, also has a user-friendly portal interface, the
GENIUS Grid portal®>'¢7l, which uses a custom architecture with specialised layers to
support different projects. On a smaller scale, but perhaps the most similar to
Discovery Net’s approach as described in this thesis, the myGrid project portal(!”
allows users to parameterise and execute workflows and visualise the results, and is

built with JSR-168 portlets in GridSpherel”sl.

2.6 Portals and Portlets

Various forms of ‘portal’ and website management software emerged early in the
development of the Web to meet common requirements of website developers, and the
general portal concept is referred to by many names. The use of pre-built software
allows developers to get a basic site skeleton up and running quickly. Portals provide a
framework allowing modularisation of website content, and the addition of common
site functionality such as forums or polls as downloadable components. The structure
introduced by the portal makes it easier for multiple developers to work on a large site,
and helps in long-term maintenance and updates. The portal software usually also

provides site-wide services such as content/page management, user management and

24

Background

security, saving further development time. PHPNuke® and PostNuke”! are examples
of commonly-used portals, particularly for small or enthusiast sites. In contrast high-
profile sites such as BBC News®! or Amazon®! tend to use their own in-house
implementations, which still share many features with typical portals, such as the
visible modularity in their page designs. News and weblog systems (e.g. Moveable
Typel®, Slashcode™) are types of cut-down portals which include content
management features, specialised for their particular purposes and generally requiring
very little configuration to produce a working site. Advanced Content Management
Systems such as Typo3®2 can also offer many of the same portal features. In business,
"Enterprise Information Portals" - often heavyweight commercial solutions such as
Oracle Portal®l or IBM WebSpherel*! - are used to provide employees with access to

information and for direct integration with business process management systems.

In portal terminology, portlets are the code modules which are usually presented to the
user as boxes on a web page (Figure 2.3). The content of a portlet usually corresponds
to a service or a piece of information which would traditionally have been presented
on a single web page, but by 'wrapping' this information or service as a portlet, it can
be displayed simultaneously with other portlets on the same page. The page layout
may be determined by an administrator or individual user. Thus a single Portal web
page may (and probably will) contain many portlets, and/or multiple instances of the

same portlet, which may be completely independent or interoperate with each other.

25

Background

a My Yahoo! - osoft Internet Explorer = |EI|£|
File Edit ‘iew Favorites Tools Help | Lirks @InforSense Discovery Paortal @Pluto Harne: @natto Partal @Discovery Partal - Login ED

FBack - = - @ ﬁ| @Search (Gl Favorites @Media ®| %v == @ R o
Address I@ hiktp: firy vahoo. comm 7 mk=eCGPEZZMRYrWsGETY IodfYwn. cSATIR 1e804HA-- j
GOOSlev I j| b Search web ~ Q_ESearch Site | @ | o O ov | EOptions - P
_ : . ? help =
welcorne, michelle_osmond97 = |

MYhHw!a [Sign ©ut, My Account] -Y_?) _))9

‘rahoo! I ail More vahoo!
Select Search Type: m Images | Local | Mews | Products rmave [& wed, Dec 1, 07:17 am
Search: I Yahoo! Search Feedback on the new My Yahoo!?

El Add Content change Layout [l thange Colors [E Set As Home Page a My Front Page | Add New Page __|
=+ Message Center edit || % =+ Reuters: Top Stories edit || %
Check Email - U.5., British Troops Raid Old Gaathist Retreat
Check Calendar = Ukraine Parliament “otes to Sack Gavernment

= Consumer Spending Stronger Than Expected

= Calendar edit || %

4 December 2004 [< Reuters: World News edit | [%

=y Mo Tu We Th Fr Sa = Ukraine Parliament YYotes to Sack Government
2

- Parades Mark AIDS Day, Africans Told ‘Abstain’
= China Toll 166 in Grim Saga of Mine Deaths

3001z 3 4
1

10 20 21 22 23 24 25 < TV Listings edit | [%

26 27 28 20 30 31 1
Today is December 01,2004 ==8:00 pm 8:30 pm |9:00 pm 9:30 pm 10:00 prm | 10:30 pm >
Mick & Jessica's Family ... ©C :
Toda EglE B ABCP |Lost CC T4 TP Wife Swap CC TVPG
No events scheduled. The King of Center ofthe
Rudolph the Red-Mosed T —— .
CBSP |- Gueens o Universe cc CSLNY cCTvi4
Thursday Add Event Reindeer Repest CC TWG s o
Noevents scheduled, \ ;
That '70s Show CC |Quintuplets ;

q PORP | Manmy 911 Local Frograrmming
Erida Add Event FOXP T4 CC T4 Manny 811 ©C TWPG Local Programming ©C ==
Mo evients scheduiact |MBCP [The Apprentice cc Tvre The West Wing cC TvRG Law & Order ¢<T414

Update - Yahoo! Calendar PBSP |Mational Geodraphic CCTYPG Great Performances CC TVG
< Stock Portfolios g% Search upcoming listings: Gol| sdvanced Search
four privacy is important to us. In < Comics adit | [%

arder to wiew your portfolio and access
ather vahoo! financial products and Doonesbury
services, please acknowledge that
you have received Yahoo! Privacy
Information for users of Yahoo!'s
financial products and services. By
clicking "l Agree" below, yau

—

acknowledge receipt of this notice and L— —2 T
P T o=t e e e | =Thinit =vivi R 0
[&H [T [tnkernet 4

Figure 2.3: "My Yahoo" (2004) is a user-customisable portal with many available

portlets including headlines, weather, calendar, movies and TV Iistings.

26

Background

2.6.1 Portlet Standards

From 2000 onwards, portals became popular for use in company intranets, acting as a
central point for aggregation of information, communication, and integration of
business services. Many companies, including IBM, Oracle, Microsoft, Plumtree,
Vignette, SAP and BEA offered their own ‘Enterprise’ portal software, providing
similar features but with proprietary APIs for portal and portlet development. Thus,
portlets developed for one portal would have to be rewritten if it was later decided to

migrate to another system.

The Java portlet standard, JSR-168I"°! (released in October 2003), was defined with the
aim that developers could write reusable Java portlets that could be used in any
standard-compliant Portal server. This would lessen the cost of moving to a different
Portal implementation, and also allow generic portlets (e.g. a webmail, chat or forum
portlet) to be developed once and then used on any portal. JSR-168 standardises
features which were already common in many pre-existing portals, but cannot include
every feature that these portals offered. This may have been one reason for the
relatively slow release of JSR-168 compliant versions of the more established portals;
however by the end of 2005, most current versions of the portals mentioned included

JSR-168 support, with the notable exception of Microsoft SharePoint Portal Server!*.

JSR-168 specifies a standard way for programming portlets in Java. The WSRP (Web
Services for Remote Portlets) standard, approved as an OASIS standard in August
2003, complements JSR-168: it defines web service interfaces so that a portlet may be
implemented as a web service which a compliant portal server can access. A WSRP
portlet may thus be remote from the portal server using it, and may be written in any
programming language. WSRP's goal is to allow interaction with presentation-
oriented, interactive web services: i.e. web services which provide their own human-
oriented user interface (the visible portlet). WSRP portlets and JSR-168 portlets
effectively offer the same features; JSR-168 may be seen as a Java-specific
implementation of WSRP features. Some portals, such as Oracle Portal, in fact support
only WSRP portlets, but also provide internal tools to wrap and expose JSR-168

portlets as WSRP web services. Figure 2.4 gives an overview of this architecture.

27

Background

User's

User’s
web browser web browser
Internet
A
T
3
o
(J2EE Application Server)
(Portal Application w
A 4
Portal
Portlet Container
A A A
. o
%) %]
Y 0
> >
(PrtolotA ! t'oo W % §
artlet Application 3 3
/, \ % >
= LKPortlet) [Portlet) J O o)
e o T
y,
Portal Server v v
(wsrP) WSRP)
L Portlet AR Portlet)

I

WSRP Providers

Figure 2.4: Portal architecture overview.

28

Background

2.6.1.1 Java Portlet Standard (JSR-168)

JSR-168 portals are implemented as Java web applications, hosted on Java application
servers (servlet containers) such as Apache Tomcat®! or JBoss Application Server!>l.
JSR-168 portlets are typically placed in their own web applications ("portlet
applications"), with a portlet deployment descriptor file portlet.xml which provides
an index of the available portlets. The portal application thus needs to be able to
inspect and access the other web applications on the same server which contain
portlets, and this is usually effected as part of an initial portal-specific deployment
process for each portlet application (e.g. by inserting a servlet from the portal in each

portlet application).

In JSR-168, the functionality of a portal is abstracted into the portlet container and the
portal server (Figure 2.4). The portlet container manages the portlets using the interfaces
defined in JSR-168, and makes them available to the portal server. The portal server
provides the actual implementation of portal features and services such as page
aggregation, user management and preference storage, which is outside the scope of

JSR-168 and therefore may be differently implemented in different portals.

Apache Plutol® is the JSR-168 reference implementation of a portlet container, and also
includes a portal server with minimal features (intended for testing, not production
use). Other JSR-168/WSRP portals include Apache Jetspeed 1.61%%], Jetspeed 212,
Stringbeans!”], eXol*!l, Liferay®®?, GridSpherel”®], JBoss Portal®!l, IBM WebSpherel*], and

Oracle Portalleel.

Figure 2.5 shows the terminology used in JSR-168 to describe the components of a
portal page. A portlet window is a particular instantiation of a portlet defined in the
portlet deployment descriptor. Multiple portlet windows may be based upon the same
portlet entry in the portletxml . Usually, each portlet window is treated as an
independent module, and has its own private scope in the user session (referred to as
the “Portlet scope”) to save data. Each portlet window is responsible for generating its
own fragment of the page, and the portal deals with aggregation and layout of the

fragments, delivering the final page to the user's browser.

29

Background

1| ——Decorations and controls
[[8] <Title> B m] [E] [F4]
_| ——Portlet fragment
pul

<Portlet content> [—Portlet window

| [8] <Title> M [ml [E] [H | [3] <Title>= M [m] [E]H | __— Portal page
— 2
<Portlet content> <Portlet content>

|[8] <Title> M (m] (E] [H |

<Portlet content>

Figure 2.5: Diagram from JSR-168 specification’? (Figure 4-1 “Elements of a
Portal Page”)

Portlets within the same portlet application can share data using the "Application
scope” of the user session. Portlets in different portlet applications cannot
communicate easily, and so it is generally recommended that related portlets are

packaged in the same application.

The Model-View-Controller architecture® is commonly used in web applications to
separate the data model, the active control code, and the page display code. JSR-168
defines the portlet lifecycle in a way to explicitly support and encourage this coding
practice. When a user clicks on a link in a portlet, or submits a form, the browser sends
a new request to the portal. The portal examines the request, which may be one of two
types: a Render request or an Action request. If it is an Action request, the portal sets off
the originating portlet's Action phase, invoking the portlet's processAction ~ method,
and once that has completed, it sets off (possibly in parallel, using threads) the Render
phase of all portlets on the current page, to generate portlet display fragments
(invoking their render methods). The portal gathers together these fragments to make

30

Background

up the whole page, and sends the response back to the client browser, which displays it
to the user (Figure 2.6). Thus, the originating portlet has a chance to perform
operations and change portlet state in the Action phase, before the Render phase
occurs. On the other hand, if the incoming request is a Render request, the Action

phase is bypassed and the portal simply re-renders all the portlets on the page.

There are several further differences in developing portlets when compared with Java
servlets, as there are some things that must be delegated to the portal. Stefan Hepper's
"Best Practices” document!’”?l describes these well. For example, on a normal dynamic
web site, a user may click on a link or form button which sends query parameters to the
target page (e.g. in the URL http://www.google.co.uk/search?g=portlets , the
query parameter ‘q’ is sent with the value “portlets’), which will be picked up and acted
upon by the page when it re-renders. A portlet uses a similar approach, but must
delegate the generation of the target URL to the portal, so that the portal can encode
the query parameters alongside other information relating to page state and other
portlets. As part of this delegation, the portlet is also able to specify whether the target
URL should result in an Action or a Render request. When the portlet window re-
renders, the portal will ensure that the portlet window’s own query parameters from
the target URL are made available to it. The portal also provides access to portlet
features and services, such as a method to retrieve the portlet instance's initialisation

parameters (which are specified in the portlet.xml).

One particularly useful service provided to portlets is portlet preferences. These are user-
specific settings for a portlet window that are persisted by the portal across browser
sessions. By editing their preferences, a user can personalise a portlet on their version
of the home page - for example, setting a home town for a Weather portlet. The method
of persistence (e.g. file store, database) is dependent on the portal implementation and
is often configurable by the portal administrator; JSR-168 provides a simple API
allowing portlet code to save and retrieve preferences, which is independent of the

actual persistence method used.

31

Background

User's Browser Portal Server Portlet Container Portlet A Portlet B Portlet C
:
H i i i i |
Request page | i i i i
— Get page layout i | |
I I I I
Fetch portlet displaysi i i i
Getdisplay i i i
Display fragment l_D render i
K--m-mmm— - i |
1 1 1
Get displa | !
Render Pay - i
Phase < Display fragment D render
e i e o m— |
| | |
] | |
Get display 3 R 3
é Disblay fragment i D render
Portlet displays i i i
| | | |
| : : :
N > Construct page ! ! !
| | | |
Portal page | | ! !
7777777777777 i | | | |
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
Submit form in Portlet B i i i i
— Submit action request to Portlet B i i i
Action reqhest i i
Action i > ‘ .
rocessAction
Prase . Any resulting updates [| > procs
Return ! ! ;
”””””””” 1 | |
- 1 1 1 1
— > Get page layout ! ! !
I I I I
Fetch portlet displaysi | | !
- | | |
Get display R 3 i i
Display fragment]_D render |
Doy fegment | ; 1
I I I
1 | |
Get display N !
Render . ! :
render
Prase . Displayfragment []| "> rend
| | |
Get display | R |
Display fragment | D render
. oo (R S ;
_Portetdisplays__ | | | | |
I I I I
I I I I
> Construct page i i i
- ‘ : : :
Portal page ! | |
i i i
I I I
I I I

Figure 2.6: Example portal page request sequence. A user first visits a portal

page, sending a Render request to the portal. Next, they submit a form from one
of the portlets displayed. The portal processes the resulting Action request, first
allowing the targeted portlet to process the form submission, then re-rendering

the page with all its portlets to return to the user.

32

Background

JSR-168 does not dictate the method of page management, layout or aggregation - that
is left to the implementers of the portal server to decide. Portals always provide some
way of creating new pages without code, but the exact method varies from editing
XML configuration files to drag-and-drop graphical web interfaces on the running
portal itself. Certain aspects of the portlet rendering process are mentioned in JSR-168
but are optional - such as caching, or parallel (multi-threaded) rendering of portlet

windows.

Some features such as inter-portlet communication and portlet filters (which would
provide similar functionality to servlet filters'3) were left out of JSR-168, although they
are often available in other Portal implementations. The limitations of the JSR-168

specification are discussed in detail in Chapter 7.

2.6.1.2 Web Services for Remote Portlets (WSRP)

As discussed earlier, the OASIS standard Web Services for Remote Portlets (WSRP)[14]
is a parallel specification to JSR-168 which defines a way of accessing a portlet through
web services. In WSRP terminology, the host of the WSRP web services is the Provider,
and the direct user of the web services is the Consumer. Thus in the context of WSRP,

the Consumer is the portal server - not the browser client or the human end user.

A WSRP Provider may host any number of WSRP portlets. A portal which supports
WSRP acts as translator, aggregator, and middle-man, accessing the remote WSRP
Provider to retrieve GUI fragments for presentation to the user, and then returning the
user's response to the WSRP Provider for processing. As web services use language-
independent protocols, WSRP portlets can be implemented in programming languages
other than Java, as long as they are accessible through a WSRP interface. Some JSR-168
portals additionally provide WSRP export of their hosted JSR-168 portlets, so a Java
JSR-168 > WSRP conversion is generally quite easy (this is necessary for portals which
have WSRP, but not direct JSR-168 support). Thus, through WSRP, a standard
mechanism exists for providing platform-neutral web service (portlet) GUIs to remote

Consumers (portals).

33

Background

2.6.1.3 The relationship between JSR-168 Portlets and Java Servlets

JSR-168 portlets are very similar to servlets, but differ in numerous small and
significant waysl1”3l. A portlet can perhaps be considered as a version of a servlet that
has been modified to permit modularisation and aggregation of multiple portlets on a
page; to do this, some new features have been added and some existing ones removed.
Many of the servlet API interfaces and classes have portlet equivalents: e.g. instead of

doGet and doPost, portlets use render and processAction ; instead of an

HttpSession , portlets have a PortletSession ; the PortletRequest and
PortletResponse interfaces closely mimic the HittpServletRequest and
HttpServletResponse . However the Portlet versions of servlet classes do not actually

inherit from or implement the Servlet classes or interfaces.

Portlets are deployed to a servlet container or J2EE server in a web application with an
additional configuration file: the portlet deployment descriptor portletxml , which
lists and parameterises the available portlets. A single such "portlet application” may
contain any number of portlets, and indeed any portlets which are intended to work
together should be packaged together in the same portlet app. A portlet application
can contain all the types of resources found in a normal web application, and portlets
should be able to make use of these resources (files, servlets, JSPs). The specific
procedure for installing portlets to a given portal may vary, but in the end - perhaps
after the portal has checked and tweaked some configuration files - the portlet

application will be deployed as a webapp.

A portlet is frequently viewed as a mini-application in its own right. It therefore
requires some degree of insulation from the other portlets in the same application, or
on the same page. One way in which the portlet specification supports this is by
extending the existing servlet concept of the session, splitting the PortletSession into
two scopes: the PORTLET_SCOPEession, which is only visible to that portlet instance,
and the APPLICATION_SCOPEsession, which is visible to all portlets in the same portlet
application (Figure 2.7). The portal also scopes portlet render' attributes (values which
are to be passed on from the portlet request-processing code to an included JSP for
display), so that a render attribute set by one portlet on a page is only seen by its own

included JSPs, and not by the JSPs of other portlets on the page.

34

Background

4 Servlet Container h
Web Applications Sessions
| /forum_portlets ’7/ Forum portlet app’s session A
o J
| /shop_portlets S
Shop portlet app’s session
| ljetspeed }\\ p,
4 Portal Session h
/ Forum portlets’ \ / Shop portlets’ \
session session
APPLICATION APPLICATION
SCOPE SCOPE
session session
PORTLET PORTLET
SCOPE SCOPE
session for session for
each portlet each portlet
o %
\§ %

Figure 2.7: Portlet applications, and the Portal itself (here, Jetspeed Portal), are

all deployed as web applications in a servlet container. A portlet application

may contain many portlets. Each portlet has its own private session area, but

can also access a shared session area visible to all portlets in the same

application.

Thus, developing a Portlet is a similar, but somewhat different and parallel, procedure

to developing a servlet. A portlet application is an enhanced webapp which may

include both portlets and servlets, and portlets can - and often do - make use of

servlets, most commonly for generating images or serving other binary files to the user.

35

Background

The Portal itself is also deployed in its own webapp in the servlet container. As noted
before, webapps are kept separate by the servlet container, and this must be worked
around by the Portal which needs to be able to access portlets in their own webapps.
As a result there is usually some extra configuration involved in registering a new
portlet application with a Portal - and often a requirement to put Portal libraries in a

common/shared directory on the server.

A full Portal deployment therefore includes a single Portal webapp plus any number of

portlet webapps, each of which contain one or more portlets (Figure 2.8).

The servlet container which

=@ jakarta-tomcat hosts web applications

A

D -
=-{3 webapps
=) jetspeed - The portal’s web application
=3 WEB-INF
) classes
) web.xml
= kdeportlets = A portlet application
=3 WEB-INF
= classes
=) com
=) inforsense
=3 web
=) portlet
) LoginPortlet.class Portlet
1) ServicePortlet.class implementation
) UserspacePortlet.class classes
=
O lib < Supporting libraries
) portlet.xml < Lists portlets in this application
) web.xml
=) messaging_portlets Another portlet application
=3 WEB-INF
= lib
() messaging-portlets.jar «<—— Contains portlet implementations
) portlet.xml < Lists portlets in this application
) web.xml

Figure 2.8: Example directory tree showing the location of the portal and

portlets.

36

Background

2.6.1.4 Future Portlet Standards

The next versions of both the Java portlet standard and WSRP are under development.

The Portlet Specification 2.0 is being developed as JSR-286[1%]; the expert group was
formed in December 2005 and as of July 2007 has reached the Public Review stage.

WSRP 2.0 has been in development since late 2004; it aims to coordinate with JSR-

286, and will also soon begin its Public Review stage.

2.7 Conclusion

This chapter has introduced the main technologies used for providing computational
Web and Grid services and for developing web portals. Following an overview of
portal usage, we have described the features of the current Portlet Standard (JSR-168)
and the Web Services for Remote Portlets (WSRP) v1.0 specification. This provides a
basis for discussing the design and development of analytical portals using JSR-168

portlets in the following chapters.

37

Analytical Portal Design

Chapter 3. Analytical Portal Design

In this chapter we consider the use of a "web portal" as an interface for interactive
analytics, allowing users to visualise data and perform analysis using remote services.
We discuss how the Discovery Net web portal was developed as a set of interacting
portlets, and how our style of implementation and usage scenarios affected our choice
of portal implementation. Finally, we present a concrete example illustrating the points
made in this chapter: a demonstration of a retail portal built using a combination of

Oracle and Discovery Net portlets.

3.1 General advantages of Web Portals

A website typically contains multiple sections, each providing different information or
tools to the end user. Modularising the back-end code makes it easier for a developer to
concentrate on one aspect of the site, allowing multiple developers to work on different
sections simultaneously, and reducing the learning curve for new developers.
Modularisation encourages a design where the different modules are, if not completely
independent, only loosely coupled, so that changes to one module have minimal

impact (requiring updates or fixes) on other parts of the site.

Using portal software as the framework for a website aids and encourages such modular
design, by providing a structure and interfaces to which modules can be developed,
plugged in, and aggregated into web pages. As discussed in the Introduction, there are
many portal implementations available, using a variety of approaches and back-end
technologies (e.g. Perl®, PHP®, ASPB4, Java Servlets!®), and the Java Portlet
specification (JSR-168)"l is a relative newcomer in the portal crowd. As many of the
older Java portals (such as IBM WebSpherel“! and Oracle Portal®l) offer a more

extensive feature set, J[SR-168's main attraction is that it is an established Java standard.

38

Analytical Portal Design

This promises that JSR-168 portlets (the web modules) will be portable between
different JSR-168 portal implementations, and provides some assurance that support
will continue for several years in the future. Also, the fact that the technology used is

Java will allow easy integration with existing applications based upon J2EE!l.

The JSR-168 community is an active onel!41¢14I, Since the specification's final release in
October 2003, many JSR-168-compliant portals have appeared, varying from barebones
open-source (e.g. Apache Plutol®) to full-featured, heavyweight commercial offerings
(e.g. Oracle Portal). Website developers also have the option of importing existing
third-party portlets to add functionality with minimal development effort. A small
number of third-party JSR-168 portlets!'>42%! are available for free or to purchase (e.g.
for integrating news, forums or email to a portal) and most portal implementations
also bundle their own selection of portlets which may be used or ignored as the site

developer chooses.

A Portal typically provides a number of services which can save considerable
development effort. Most importantly, the portal will provide a mechanism for
constructing web pages by aggregating portlets. This is of course a critical feature of
the portal, but the separation of page layout and navigation from the development of
portlets also allows further division of responsibilities within a large web team. The
method of constructing pages is different in each portal, from manually editing
configuration files before the server is started, through to a drag-and-drop GUI on the
portal itself at runtime. A strong driver for using portals is personalisation of pages,
usually by allowing users to modify which portlets appear on their "home page", and
to configure them with custom settings. Further, some sites may allow users to create
their own new pages, effectively building their own sub-site using the portlets
provided. Portals which allow users to personalise their pages must usually include a
user system, which may also include a Roles or Groups model. User management and
role-based access to protected pages or portlets may therefore also be counted among

the services potentially provided by the Portal.

39

Analytical Portal Design

In summary, the key benefits from using a Portal, and in particular JSR-168, are:

* Modularisation of website content; separation of site structural design from
portlet development
» Generic services provided and managed by the Portal, e.g. security, user
management, page management
« Ability to host portlets in any JSR-168-supporting Portal
o Choice of Portal implementation
o Easily share portlets for hosting in other portals

o Easily plug-in 3rd-party JSR-168 portlets

However, as will be described in detail in Chapter 7, there are several limitations
involved in developing JSR-168 portlets. Many of these issues have workarounds (of

varying effectiveness), which are also discussed in that chapter.

The next version of the portlet specification (JSR-286) is currently in progress; this
continuing development, building upon JSR-168, should act as a further
encouragement to support the JSR-168 standard for developers of both portlets and
portals, as later migration of code from JSR-168 to JSR-286 is likely to be easier than
migration from a proprietary portlet interface. The new standard will address many of
the features lacking from the original specification, and hopefully also some of the

additional limitations described later.

3.2 Requirements of an Analytical Portal

Most web portals today focus on presenting information to the end user. While many
also provide interactive features such as facilities for users to contribute content (e.g.
through polls, comments, reviews, forums), or initiate business processes (most
commonly, buying from a shop), the core requirement is still the provision of
information. Thus "Content Management Systems" (CMS) have been developed for the
storage, maintenance, aggregation and presentation of information. CMSs often
include standalone client applications for performing administrative tasks, although
some (e.g. Typo3[#2) have implemented these as web-based applications. An alternative

approach for managing content is through wiki softwarel'?, which allow web-based

40

Analytical Portal Design

content editing, potentially by any user of the site. Many Portal solutions provide ways

of embedding both existing CMSs and wikis.

In contrast to other portals, the focus of analytical portals is to provide a wide variety
of rich web interfaces to an ever-changing pool of available services, making use of at
least one robust back-end system for managing service execution (Table 3.1). Data
management is also a required capability, but this time from the point of view of using
data as input to services and storing/accessing service results, and the portal may
delegate this function to the back-end analysis engine. Conventional content
management, for managing the content of static pages on the site, is still necessary but

can be assumed to be a standard service that will be available in most modern portals.

A common feature in portals is a web-based front end for managing and composing
portal pages. This is typically mainly used by the portal administrator for creating the
static parts of a website. However, analytical portals can make greater use of this
feature by additionally allowing their users to create their own personalised sub-sites
(of multiple pages) using the different analysis portlets provided by the portal. There
may also be an intermediate level of users or administrators who can create 'group’ or
‘role'-based pages which are available to a group of users (e.g. all participants in a

particular project).

Therefore, we envision an analytical portal which does not need to provide a pre-
designed website with custom pages for every possible tool (and associated
navigational systems), but instead can allow users to build their own version of the
site, focusing on providing a library of functional portlets which each user can combine
and personalise in the way most useful to them. The personalised page creation system
thus gains greater significance for analytical portals than in other portals, becoming a

core part of how the portal is used, rather than a peripheral gimmick.

41

Analytical Portal Design

Traditional Portal Analytical Portal

—

L _ Focus on providing data and
Focus on providing information _ _ _
interactive analysis tools

Document management and Data storage and provision,
presentation Application hosting and execution

_ _ _ User-customisable page contents
Static page/site design
User-created new pages

Design main features from the o
O Hosted applications may be
beginning, and launch completed _
" changed and added to at any time
site

o High proportion of user generated
Limited/controlled user-generated]]
content, up to and including the
content, e.g. forums, comments _ o
analysis applications themselves.

Table 3.1: Feature Comparison of Traditional and Analytical Portals.

3.3 Functional requirements for the Discovery Net Portal

Our concrete example of an analytical portal is the Web Portal for Discovery Net's data

mining engine, which executes Discovery Net workflows.

The web portal needs to provide access to a subset of Discovery Net's features:
primarily, it must provide a web interface to parameterise workflows and submit them
for execution. It does not need to include full workflow editing capabilities, which is

already catered for by the Discovery Net Java client.
The features which must be provided by the Discovery Net web portal are:

+ Discovery Net Userspace
o data storage, management and retrieval

« Discovery Net Services (deployed workflows)
42

Analytical Portal Design

0 inspection of service metadata and workflow details

0 parameterisation through a user-friendly web form (including use of
applets for inputting special types of parameters, e.g. molecule sketch)

o ability to save/load 'bookmarks' of frequently used parameter settings

o execution through the web form

o task monitoring and management

o display and storage of service results

o ability to pass on a service result from one service as an input to another

» Discovery Net Server Administrative functions

« Help pages
In addition, related to the Portal implementation:

« A web-based interface for creating new portal pages is essential so that users

can create their own personalised pages.

3.4 Non-functional requirements for the Discovery Net Portal

Usability: Users should be able to discover how to manage data in their userspace, and
parameterise and execute deployed services, with no or minimal training required.
Some training or documentation may be necessary to enable users to create their own

personalised pages.

Error handling: Errors resulting from service execution must be reported in sufficient

detail for the user to understand what went wrong (whenever possible).

Security: Users must log in to the portal before accessing any Discovery Net userspace
or service functionality. Roles must be used to determine which parts of the userspace

and which services are accessible to different users.

User/Role Management: The portal’s user system must be integrated with Discovery
Net’s user/group system, so that the two user registries do not need to be manually

synchronised.

43

Analytical Portal Design

Robustness: The portal runs on the same application server as the main Discovery Net
engine, and so must be robust enough in operation to survive weeks and months of

continual uptime. Resources must be managed and released efficiently.

Internationalisation: It must be possible to fully internationalise the portal pages.

3.5 Discovery Net portlets

The original Discovery Net web portal already provides access to most of the required
features, as a fixed set of web pages using servlets organised with Apache Strutsi.
However, sites based upon this architecture are not well suited to conversion to
portlets, except as a monolithic whole; an entire site can be embedded into a page
using an IFRAME, or utilities such as the Apache Portals' Struts Bridgel®l can wrap an
existing Struts application as a single portlet. These approaches are suitable for quickly
integrating an existing application into a portal site - particularly when there are many

such applications to convert.

However, we wanted to split up the different types of Discovery Net functionality into
separate portlets, taking advantage of their component-like nature to provide users
with new ways of accessing Discovery Net services. Of particular interest was the new
possibility of having multiple services on the same page, and allowing results to be

passed from one service as input to the next.

Therefore the first priority was in identifying suitable portlets: sections of functionality
which were loosely coupled and reusable. These broadly correspond to the pages in
the original web portal, but some aspects (such as the different userspace functions)
have been split up further, for clearer control of dependencies between portlets, and

flexibility in arranging page content.

44

Analytical Portal Design

3.5.1 The Service Portlet

This portlet is the key to providing the Analytical Portal. It displays a service form
interface for a selected service instance, allowing the user to parameterise it, submit it
for execution, and view the results (Figure 3.1). The selected portlet is discovered either
from an input message from another portlet (e.g. the Service Index portlet), or from
explicit configuration by the user in this portlet's Edit mode. Such direct configuration
to select a service is saved in the user's preferences for that portlet window, so the
portlet will continue to display the selected service on future visits. Multiple Service

portlets can thus be added to pages and separately configured to create personalised

'dashboards'.

Service Portiet = = O
Edit Messaqging Yiew Project Details

Service: fservices/GUSTOfGUSTO - Graph Visualisation Add/Load Bookmark |Cluse

v axic [Conc 502 = Qutput for action: Graph Selected Pollutant
Select pollutant to
shaw, 140
Colour axis
130
Senzor_|D -
Glyph size 120
|3 110
Graph Selected Pollutant |
view araph 100
Graph All Pollutants | an
[y
= a0
I
= 70
&

N
R
I

10 T T T T
= = e = = = vy e e =
@ w = - b2 = hee o o ~
= = = . — [l [l b2 (0] (8]
= e o b2 (=) = L= o b2 (=)
Titne

Figure 3.1: Service Portlet. In the default layout, the parameters are input on

the left and the result shown on the right.

45

Analytical Portal Design

Service 'bookmarks' of a service's frequently used parameter settings can be both saved
and loaded. Service bookmarks are stored as files in the userspace, so can be shared

with other users simply by moving them to a shared userspace directory.

The portlet also allows the user to view details of the underlying workflow. This has
the same effect as viewing the service in the Userspace Item Viewer portlet (Section

3.5.2.4).

Finally, the advanced user can configure the portlet to pass on the result(s) of the
service to be used as input parameters in another Service portlet. This is implemented

using the IPC library and is configurable in the portlet's Edit mode.

The design of this portlet is key to the flexibility of our analysis portal. A single Service
portlet implementation acts as the interface to any deployed Discovery Net service
(Figure 3.2). This is in contrast to the more common approach of providing a bespoke
web interface - either with static web pages or a custom portlet - for each service. This
usual approach has the disadvantages of low flexibility and extremely high
maintenance on the part of the portlet developer (who has to create a custom interface
for each service) and for the portal server administrator (who has to install the new
pages/portlets, and keep them accessible and up to date as the pool of available
services changes). It does however allow for completely customised web interfaces, as
each can be hand-tailored to the service's requirements, both in inputting parameters

and the treatment of results.

On the other hand, our approach of using a single Service portlet does not require any
ongoing maintenance or manual intervention by either the portlet developer or the
portal administrator, as the portlet can show any Service without further custom
programming, and is always up-to-date with the list of services available. This is made
possible by introducing standard ways of describing web interfaces to Discovery Net
services, which the Service portlet can then transform to generate the final HTML code.
We discuss this approach to the problem of dynamically generating rich, user-friendly

service interfaces in Chapter 4.

46

Analytical Portal Design

/ N\ (e)
4 Web Server h Remote Resources
/) N Portlets
~ User's Web (" Poral)
Browser -
P WSRP/SOAP .| Remote
h "l Portlet
Discovery Net | |(HTTP 4| Loca
(DNet) Portlet Portlet
. WSRP/SOAP | Grid]
h "l Portlet ol
Local Portlet
e Local
51 € Portlet
©
§ g Cluster
; e > WSRP/SOAP .| DNet
(" User's Web) 5 || o " Portet K| g
5112 5
@) Browser s § a% 5
P WSRP/SOAP .| DNet Z = = S\évr\?i?: .
Grid h "l Portiet [¥ 2
Portlet < Local >
- HTTP <>
1 « Porte : —_—
o Q Ny
o P WSRP/SOAP .| DNet / 3 Database
2 DNet Portlet o .
o Portlet
) —
/)

Figure 3.2: Discovery Net Portal architecture. A single Discovery Net Service
portlet can be configured to provide an interface for any Service (deployed
workflow) on the Discovery Net Server. The Service workflow may access any

computational resource, such as Grid Services, clusters or databases.

47

Analytical Portal Design
3.5.2 Supporting Portlets

3.5.2.1 Service Index Portlet

This portlet lists the deployed Discovery Net services available to the current user

(Figure 3.3), and allows the user to select a service for use in other portlets..

The services are grouped by location in the userspace. In future, they might
alternatively be sorted or searched using service metadata, but such metadata is not

currently available.

By default, all visible services are shown. The portlet can be configured in edit mode to
show only services under a specified directory, which is helpful when building focused

portal pages for particular projects.

For a selected service to be parameterised and executed, a temporary (per web session)
service instance must first be created. This service instance is used to maintain state on
the server, including caching of intermediate results. Thus the Service Index portlet
creates a new instance of the requested service and then publishes a message for other
portlets identifying the selected service instance. Later, whenever the service index is
re-rendered, it will also indicate the existence of service instances alongside their
parent service - these instances may from then on also be directly selected for use in

other portlets.

48

Analytical Portal Design

8. H=DO

Retrieve OLAP data

¢ fdemo/Windber/Retrieve OLAP data
¢ fdemojfWindber/Retrieve OLAP data (1)

Geohazard Arrow Generation
- Load an arrow file corresponding to the China images to generate arrow visualisations,

Geohazard Shift Analysis result
- Wisualisation of cached gechazard image shifts, shown as arrows overlaid on the original images.

Image Segmentation Analysis
- Image segmentation analysis workflow,

Image Shift Calculation

- Image shift analysis of a pair of images. For each irmage, you should upload a .raw file for processing, and a
Jpad.aif + corresponding .crd file for visualisation,

Create Table
Hello World
View Table
¢ fsarvices fExamples /View Table

GM Scenario - Analysis of data
- M Scenario data analysis, Looks at raw data and determines the proportion of GM samples in each field,

GM Scenario - Yisualisation of results
- Wiew results of the 5 different scenarios for distribution.

GM Scenario - Yisualisation of results 2
- Wiew results in interactive applet

GUSTO - GIS Yisualisation Applet
- GUSTO project: data wisualisation using GIS wiewer, vou can wiew the full data in an interactive applet.

GUSTO - GIS Yisualisation Snapshot
- GUSTO project: data wisualisation using GIS wiewer, vou can look at snapshots at particular times and pollutants,

GUSTO - Graph Yisualisation

- GUSTO project, Graphical wisualisation of pollutant concentration levels over time. vou may show all 4 pollutants
on the sarme graph, or configure it to select one of the pollutants and a corresponding colour scherme.

¢ fservices /GUSTO/GUSTO - Graph Visualisation

GUSTO - Statistics

- Summarise the GUSTO data by calculating mean values over user-specified time periods, If you save the GISWiz
table, vou may then view the results in the GISViz applet in the other GUSTO Yisualisation workflow,

Figure 3.3: Service Index Portlet, showing available services with their

corresponding instances in the current user session.

49

Analytical Portal Design

3.5.2.2 Tasks Portlet

This portlet displays lists of running and completed tasks (Figure 3.4). The user may
view details of tasks, and the task results. They may also delete old tasks and their

results.

This functionality is provided by simply including the original Discovery Net portal's
task management servlet within an IFRAME (embedded on the portal page).

Task Management Portlet =] -
Tasks Home

Task Management

Running tasks

There are no running tasks.

Finished tasks

Task | Task . Task
D | owner Task Name Start time State Manage
0 demo Action View table of View Table Tue Jan 31 DONE + Rosult
(16:58:58 171 31/01/06) 16:58:50 GMT + Remove
2006
1 demo Action Table of Retrieve OLAP data |Mon Mar 20 DOMNE « Result [
(18:32:23 320 20/03/06) 18:32:25 GMT + Remove
2006
2 demo Action Table of Retrieve OLAP data |Maon Mar 20 DOMNE * Result
(18:32:33 007 20/03/06) 18:32:34 GMT + Remove
2006
3 demo Action Graph Selected Pollutant of — |Wed Mar 22 DOME « Result
GUSTO - Graph Visualisation 11:58:01 GMT * Remove
{11:57:50 544 22/03/06) 2006 -

Figure 3.4: Tasks Portlet

50

Analytical Portal Design

3.5.2.3 Userspace Index Portlet

This portlet presents a standard 'file-explorer'-style interface for browsing the
userspace folders available to the current user (Figure 3.5). The list of items in a folder

includes descriptive attributes (type of file, date modified, size).

Userspace Index Portlet 8 = O
fa demo Name Type Modified Size
m SErEns GUSTO - GIS Yisualisation Applet project 22-Mar-2006 11:45:55 317 KB

0 Earth Sciences GUSTO - GIS Yisualisation Snapshot project 22-Mar-2006 11:45:55 S515KB
o Examples GUSTO - Graph Yisualisation project 22-Mar-2006 11:58:33 115.0 KB
i GUSTO - Statistics project 22-Mar-2006 11:45:53 99.7 KB
[Q SM Scenario @ gUSTO - GIS Yisualisation Applet service 22-Mar-2006 11:45:55 F09 KR
[SUSTO & guSTO - GIS Yisualisation Snapshot service 22-Mar-2006 11:45:54 S20KB
[Plasma Physics €| GUSTO - Graph Visualisation service 22-Mar-2006 11:45:54 108.2 KB
(] Yelesom A '@_ GUSTO - Statistics service 22-Mar-2006 11:45:53 QS0 KR
ffl 15 min means tahie 22-Mar-2006 11:45:55 8029 KB
ffl Sensor_coords tahie 22-Mar-2006 11:45:51 o.0kKB
fl gusto_10h_4pollutants table 2E2-Mar-2006 11:45:53 3.5 MR
fl hourly_mean tabie 22-Mar-2006 11:45:52 199.6 KB
ffil sampled_forallGraph table 22-Mar-2006 11:45:52 242.8 KB
ffi sampled_forSeparateGraphs tabie 22-Mar-2006 11:45:51 1.6 MB

Ia’demof = Browse this folder |

Figure 3.5: Userspace Index Portlet

The portlet is intended to be used in combination with other portlets. Other than
browsing, its main function is to allow the user to select items for further processing in

other portlets. Both files and folders in the userspace may be selected.

The user may specify the default folder path to be displayed on first viewing, in this

portlet's Edit mode.

51

Analytical Portal Design

3.5.2.4 Userspace Item Viewer Portlet

This portlet detects the selected userspace item from the Userspace Index portlet and
displays its contents in an IFRAME embedded within the portal page (Figure 3.6).
Different items are displayed appropriately for their type; some, such as workflows
and tables, are pre-processed and formatted for display in a web browser, whereas
others (images, custom data files such as molecules, unrecognised file types) are
presented to the browser in raw form with an appropriate "Content-type" header so
that the browser may use whatever display plugins are installed and appropriate. The
HTML table view additionally provides the option to export the table to CSV or

Spotfire” format.

The user may specify the default userspace item to be displayed, in this portlet's Edit

mode.

Userspace Hem Portlet
qusto_10h_4pollutants [Open in new window] Folder Details /services/GUSTO/

Table gusto_10h_d4pollutants
Table Size: 84000 rows

Show sample of: [a0 Wigw |

Export aptions: C3Y Output (Exceld TSY Output XML Qutput dWebRowSet XS0 XSF Output (Spotfire)
[Mote: To download file, use right-click and select"Save As.."

Time |SensorlD |Conc_NO |Conc_NO2 |Conc_0Ozone (Conc_S02

08:00 (A1 9.0 15.0 3.0 an.an

0a:01 (Al 9.0 11.0 a.0 anan

08:02 (A1 9.0 13.0 5.0 an.an

08:03 (A1 13.0 12.0 6.0 31.0

0a:04 (A1 11.0 11.0 7.0 31.0

08:05 (A1 9.0 160 4.0 320

08:06 (A1 120 120 30 310 [
08:07 (A1 1.0 120 4.0 320

08:08[A1 11.0 120 a0 30

08:08 (A1 11.0 13.0 G.0 31.0

08:10(A1 9.0 13.0 4.0 31.0

08:11 (Al 10.0 12.0 4.0 320

08:13 (Al 10.0 14.0 f.0 3z2.0

08:13(A1 8.0 13.0 4.0 320

0a:14 (Al 12.0 11.0 6.0 330

0a:15(A1 9.0 13.0 6.0 320 j

Figure 3.6: Userspace Item Viewer Portlet, showing a table item.

52

Analytical Portal Design

An alternate display mode allows a whole userspace folder to be viewed in summary
("detail") mode. This is similar to a normal folder listing, but further details of tables

and projects are shown in a compact form.

3.5.2.5 Userspace Item Manager Portlet

This portlet detects the selected userspace item from the Userspace Index portlet, and
offers appropriate management options. If the selected item is a file, it allows the user
to rename, move, or delete it. If it is a directory, the user may additionally create a new

directory within it, or upload a new item.

3.5.2.6 Userspace Upload Portlet

This is a standalone portlet allowing direct upload of tables or files to the userspace.

The target directory may be specified in this portlet's Edit mode.

The intention of this portlet is to provide users with a simple component which may be
added to a page near to a Service portlet, for convenient upload of resources to be used
by the service. However the Service portlet can also allow inline file upload as part of

the service parameterisation form, so the use of this portlet is not always necessary.

3.5.2.7 Admin Portlet

This portlet allows a Discovery Net server administrator to perform a number of
administrative tasks, such as installing new components or managing users and
groups. Like the Tasks portlet, this is implemented by simple inclusion of the original

portal's admin servlet within an IFRAME.

The portlet is protected using both the inbuilt authorisation checks in the admin
servlet, and role-based portlet permission settings in the portal server, which prevent

the portlet from appearing to unauthorised users.

3.5.2.8 Help Portlet

This portlet provides access to the Discovery Net Portal help pages, by inclusion of the

original portal's help pages within an IFRAME.

53

Analytical Portal Design

3.6 Portlet Message Flow

Each portlet provides a useful service, but most are not completely independent. For
example, the various Index portlets need to communicate with their respective 'detail’
portlets. The communication paths between portlets are illustrated in Figure 3.7. As
communication between portlets is not provided for in JSR-168, we implemented and
used our own portlet messaging (IPC) library, whose design is discussed in detail in

Chapter 5.

The most interesting part of this is the ability for messages to flow between Service
portlets. This allows the result of one service to be passed on as input to another
service (in fact the actual content of this message is the Task ID, as the result itself is
stored on the Discovery Net server). This allows multiple related services to be easily

used in sequence.

However, the users still need to know which services can be used together. The page
customisation features provided by a portal can be used to produce better ways to

publish and access a sequence of services than hunting through a simple service index.

A portal user with admin rights - for example the leader of a project group - can create
new portal pages and share them with other users. A new page or set of pages can be
created to provide access to a specific sequence of services, simply by laying out
multiple service portlets on a single page (or in a sequence of tabbed panes) and
configuring each service portlet to show the correct service. Then, new users can
simply be directed to these custom pages. The page creator can also configure
messages between the portlets so that service results are automatically fed into the
appropriate input parameters of other Service portlets; this configuration can be saved
as the default, so that from then on the users need not even be aware of the messaging

configuration and can just use the services as intended.

54

Userspace Index
Portlet

Analytical Portal Design

Userspace Item Userspace Item
Viewer Portlet Manager Portlet

N ____ | F_____)
/ \
| |
: Userspace Userspace Userspace :
| Item Path Folder Path Path (any) :
\)
N e 7/
N
o
(@)}
@ P ~N
A~
§ | Service |
: Path :
| | L
| . |
! Service ! Param Param
| Instance | | Inputs Outputs
N) /
N £~ J

\ ~
Service Index _
Portlet Service Portlet

Note: Userspace Item and Service paths can sometimes be treated equivalently

Figure 3.7: Message flow between Discovery Net Portlets.

Input Messages

Portlet

Output Messages

(none)

Userspace Index

Userspace Path
Userspace Folder Path
Userspace Item Path

Userspace Item Path
Userspace Folder Path

Userspace Item Viewer

(none)

Userspace Path

Userspace Item Manager

Userspace Path
Userspace Folder Path
Userspace Item Path

(none)

Service Index

Service Path
Service Instance Name

Service Path
Service Instance Name
Dynamic parameter inputs

Service

Dynamic action outputs

Table 3.2: Message inputs and outputs of Discovery Net Portlets.

55

Analytical Portal Design

3.7 Software constraints for the Discovery Net portal

Initial Discovery Net portlet prototypes were developed using Apache Plutot, the
reference JSR-168 portlet container. Once the basic concept had been proven, we
assessed the available portal software to choose one for integration and distribution

with Discovery Net.

The Discovery Net portal must be embedded in the existing Discovery Net server
installation, which is a J2EE application running on JBoss 3.2.75%0l. The original servlet-
based portal is still included in the distribution; the JSR-168 portal and portlets simply
provide an alternative, and so must be able to co-exist. Thus the technical constraints

for the Portal implementation include:

« Java (J2EE)-based
* Runs on JBoss

« Allows integration with existing Discovery Net user system.

We also required the portal to be open source (in case custom modifications for full

integration became necessary), and free for use in a commercial application.

In addition, for the Discovery Net portlets to work as intended, there are several

requirements relating to some specific Portal design choices (discussed in Chapter 7).

» Support for hosting JSR-168 portlets.

+ Independent treatment of multiple portlet windows based upon the same
portlet instance (necessary to allow multiple Service portlets to show different
Discovery Net services).

* Support for turning off caching of portlet views in the Render phase (necessary
for the inter-portlet communication library to work).

« Ability for Struts-based servlet applications to co-exist with portlets in a portlet
application (the Discovery Net portlets are heavily dependent on the original

Struts-based portal).

56

Analytical Portal Design

Finally, the added value of the JSR-168 portal compared to the original portal is the
flexibility of allowing users to arrange services on their own pages. Thus, the portal
must provide web interfaces for users to create and customise personal pages. In

particular, they must be able to:

« add/remove pages
« add/remove portlets on pages

« arrange portlets on pages

3.8 Choice of Portal implementation

A comparison of available J2EE, open source, free portals was carried out in Spring
2005, to find those which best met our requirements. While this analysis was valid at
the time, it is important to note that development of portals proceeds very rapidly, and

new versions of many of these portals are now available.

We first investigated the features offered by each portal to confirm that they offered
adequate support for page management and integration with Discovery Net. Next,

likely portals were tested by deploying, in sequence:

« The testsuite JSR-168 portlets provided by Sun/Pluto (to confirm basic JSR-168
support)

« Simple example messaging portlets working with our IPC library (to confirm
IPC library support)

« Discovery Net portlets (to confirm Struts support)

These different portlets put increasing demands on the portal, and so if a portal was

found inadequate for one set, later ones were not tested with that portal.

3.8.1 Portals not examined

Several portals were considered but initial investigations indicated they were not

suitable.

Jetspeed 21! was still under development so was not included in the analysis. Jetspeed

1 was the original Apache Portal project, prior to JSR-168's release. Jetspeed 2 is a
57

Analytical Portal Design

rewrite which provides native JSR-168 support. However Jetspeed 2's page
management and customisation system was not developed until very late in the
development cycle, and at the time of the analysis even its design had not been
finalised. As this was an important part of our portal usage scenarios, we could not

consider the milestone releases of Jetspeed 2 as an option.

JBoss Portal®l was just released at the time of the analysis, but requires a higher
version of JBoss (4) than that used in Discovery Net. However, when Discovery Net
upgrades its version of JBoss, this portal will be seriously considered, as the benefits of

using a pre-integrated portal cannot be ignored.

Stringbeans Portal”l, developed by Nabh Information Systems Inc., was in early
release and not sufficiently mature in features at the time. Additionally, it is available

under the GPL licence, and is not free for commercial use.

Sakail”!l, also a comparatively recent portal project, started in January 2004 as an
evolution of uPortal® and CHEF. It is supported by academic organisations in both
the US (University of Michigan, Indiana University, Stanford and MIT) and the UK
(the JISC Virtual Research Environments Programmel?!l). However, although initial
plans intended the use of JSR-168, in practice this has not been a high priority and
Sakai does not yet include support for embedding JSR-168 portlets.

eXo Portal*!, although open source, does not allow for free distribution in commercial

software.

3.8.2 Portal comparison results

Oracle Portal® was previously known to meet all of our portlets' software
requirements (as shown in the Business Intelligence demonstration in Section 3.9) —
except that it was not open source or free, and could not therefore be packaged as part
of the Discovery Net system. It did however act as a useful example for comparison. Its
main advantages are that it treats each portlet window as a separate instance, allowing
multiple Service portlets to operate independently, and provides a high-quality web

GUI for page construction and modification.

58

Analytical Portal Design

Apache Plutol® is the reference JSR-168 portlet container implementation, and was
used in early development of the Discovery Net portlets. However its portal
component is basic and not intended for production use, so again is included for

comparison.

As mentioned, the original Jetspeed Portal was one of the early generation of portals
and did not support JSR-168. However, the Jetspeed 2 developers back-ported the JSR-
168 support to Jetspeed 1, which was released as a hybrid Jetspeed 1.6 (named
"Fusion")?%l. This allows us the use of Jetspeed 1's mature user and page management

features, combined with modern JSR-168 compatibility.

Liferay® is a popular portal, particularly notable for its elegant styles. It is available
under the MIT license (a business-friendly open source license) and contains excellent
documentation and support for integration with JBoss and other application servers,
and with external user authentication systems. Unfortunately when we reached the
stage of deploying and testing Discovery Net portlets, we found that it was not
compatible. This was because it included its own custom support for Struts in portlets,
with a modified Struts library, which conflicted with our use of Struts in normal

servlets within our portlet application.

uPortal®l is a portal targeted mainly at academic institutions, but can be used for any
subject matter. However while testing the IPC library portlets we discovered that it
automatically cached portlet displays, and used its own methods to determine when
the display needed to be re-rendered. Normally this would be an efficient approach,
but it effectively disabled the IPC library which relies on message retrieval during the
render phase. As we were unable to turn off this caching, we had to abandon uPortal

as a possible solution.

GridSpherel”, originally based upon code contributed from the commercial portal IBM
WebSphere!*], is closely associated with e-Science projects and includes a set of JSR-168
Grid portlets. Its features (such as page editing interfaces) were more 'barebones' than
the other portals examined at this stage in testing, but functional. However, it did not

allow for multiple independent portlet windows based upon a single portlet definition.

59

Analytical Portal Design

Table 3.3 shows a summary of the results, and includes the exact versions of portals

tested. Several portals failed our tests due to small issues that were nonetheless critical

to us.
g o
wn o a % o g 8
3|2 |3|gglE |8B|=
o o g _S el = S| 8 g
= c|o sl <3 o
o |25 |8l22le |elcT
o nl= 2]3s5|e ol 3@
o 5|5 |3|23& |&|lckE
c |22 |5|85|le [g|Se
o o | © oo 3sncs|®2
] 2 |l F[E|lsvaofa]lo=
c o |o c|>alf o200
S > -g o | = o g © g 20
Portal Version |& |9 [= |©O[N =0 = 3| Further Comments
Oracle Portal | Developer | n/ viiv | v]| Vv v' | v' | n/a |Commercial
WSRP
preview
Apache Pluto| 1.0.1rc2 Basic portal provided,
not intended for
production use
Jetspeed 1.6 JSR-168 support back-
ported from Jetspeed 2
Liferay Enterprise The custom version of
3.2 Struts included in Liferay
conflicts with that used
by our application
uPortal 2.4.2 Uses its own mechanism
to determine when
portlet views need to be
refreshed - bad for IPC
library.
GridSphere 2.0.2 Page customisation is

not as flexible as other
portals'.

Table 3.3: Portal Comparison (2005) examining suitability for hosting Discovery

Net portlets.

Analytical Portal Design

3.8.3 Chosen Portal

Jetspeed 1.6 was chosen as the most suitable portal to integrate with the Discovery Net
server. Among the portals considered, it was the only one to meet all the technical

requirements, and additionally provided excellent page customisation tools.

It is notable - and unexpected - that our requirement for independently-treated portlet
windows based upon the 'same’ portlet (e.g. multiple Service portlet windows) was not
commonly implemented in the portals examined at the time. We were therefore willing
to bend this requirement if necessary, as similar (though inferior) functionality could
be obtained by adding multiple, numbered instances of the 'same' portlet in the
portlet.xml . However, we still consider this ability to be very important in fulfilling
our usage scenarios, and so in future this may turn out to be a key technical
requirement for analytical portals in particular. If the treatment of portlet windows is

clarified in the next Portlet Standard, this situation should improve.

On the other hand, page customisation (our other key feature identified for analytical
portals) was generally quite good, although some portals allowed more precise or

varied layout options than others.

Since the comparison was performed, there has been considerable activity in the Portal
market and most of the examined portals have released new versions. In addition, a
number of new products are now of sufficient standard/maturity that they should also
be included in any future comparisons. Of particular interest to us are Jetspeed 2, as we
are already using an early version of its JSR-168 engine embedded in Jetspeed 1.6, and
JBoss Portal, which would be most easily integrated with a future version of Discovery

Net running on JBoss 4.

However, one year after this comparison, we still consider Jetspeed 1.6 to be a good
choice, as it remains superior to Jetspeed 2 in page customisation, and JBoss Portal
requires a higher version of JBoss than that currently used by Discovery Net. Jetspeed
1.6’s main disadvantage is that it is a discontinued product, and for this reason

migration to Jetspeed 2 or another portal will be necessary at some point in the future.

61

Analytical Portal Design

3.9 Business Intelligence demonstration

The Oracle Business Intelligence demo application best illustrates the points put

forward in this chapter.

This demonstration was one of our first to use portlets, and was based upon Oracle
Portal, a component of Oracle Application Serverl®. Oracle Portal is a well-established
commercial portal, which supports its own native portlets. It provides a powerful web
interface for page creation and management, and treats each portlet window as an
independent instance with respect to both sessions and preferences. Oracle also sells
many of its tools as portlets (Oracle-native, not JSR-168), including Business
Intelligencel® components such as Discoverer for viewing reports from data

warehouses, and Oracle Spatial'®’! for visualisation of data over maps.

The demo was performed using a developer pre-release version of Oracle Portal, which
supported WSRP portlets and additionally provided a way of hosting and exposing
JSR-168 portlets through WSRP. The current version, Oracle Application Server Portal
10g Release 2 (10.1.4), was released in November 2005 and is the first full version to

incorporate this functionality.

We show a portal combining both Discovery Net Service portlets and existing Oracle
Business Intelligence portlets. By installing our Service portlets, any deployed
Discovery Net workflow can easily be accessed through the portal, providing flexible
analytical capabilities without significant effort on the part of the server administrator.
Discovery Net also includes a plugin allowing development of workflows which
integrate closely with Oracle databases and services, which allows for even better
integration with the Oracle data warehouse and business intelligence services (Figure

3.11).

The scenario examines sales data for a large chain of shops. The portal provides
information and analysis tools for people in different positions in the organisation.
Oracle Business Intelligence portlets present interactive views upon warehoused sales
data, allowing general managers to assess all shops' performance, and identify those

that are underperforming (Figure 3.8). The store managers can then examine specific

62

Analytical Portal Design

sales performance for each product type, drilling down into categories to find out
which products are not selling as well as expected (Figure 3.9). Discovery Net services
can then be used to analyse the data further, and aid in decision making - for example,
association rules can be found which indicate which products are usually bought
together, and by what customer demographic (Figure 3.10, Figure 3.12). A marketing
manager could then use these correlations to plan marketing campaigns and special

offers, to best promote the underperforming products.

€] Home Page - Microsoft Internet Explorer =
File Edt Wiew Favorites Tools Help al-
= = R Home Help
Universal Retailers Analytics Dashboard o
<.
Corporate Administration Store Management Warketing Category Managerent

Overview Top Performers Bottom Performers Flash Sales

Bottom Revenue Producers

Location Sales Revenue | Plan Revenue | Difference ho
PEMMEYLWANIA AVE B,182,726.90| 9,045189.80 -31.65% DOW70—25
MASSACHSTS AVE 276546242 | 3,886,353.22| -28.84% RIS 222
20TH ST My 1,990,515.53 | 2,785,789.37 -28.55% Submit
W ST M . 366131457 5,089,765.40| -28.07%
BTHSTMNE 1 4,5595,873.04 | 6,135,798.88 -25.75%

EYE 5T 8 537263311 B932672.74| -2250%
ARLINGTON BLVD 6,513,790.63 | 7,948,201.21 -18.159%
WASHINGTON BLYD T65,396.64 928 596 .56 -17.57%
E MELSON AVE 5,002,490.00| 6,060,609.34 | -17.46%
CHILLUM RD 3,950,400.46 | 4,601,942.98 -14.16%

Last Refreshed: 17-Jan-2005 14:24:14 GMT
igw Worksheet Mext Refresh: Time not available

a Dane ‘d Local intranet

Figure 3.8: Managers can identify which shops are underperforming and
instruct their store managers to take action. An Oracle Discover portlet is used
to display the summary information from a data warehouse, and Oracle Spatial

1s used to show the same information on a map.

63

Analytical Portal Design

€] Home Page - Microsoft Internet Fxplorer

File Edit view Favorites Tools Help

Lgyersal Retailers Analytics Dashboard

t

Corporate Administration Store Management Iarketing Category Management [%
urrent vs. Prior Ye Plan vs Actual

Plan vs Actual

P1_Wk P2_Mo P3_¥r
Plan SaleslnmuaISaleleena Plan Sales |Ac(ual SaleleeIla Plan Sales |A(:lual Salesl Delta
01 WOMENSWEAR | | 4,478,995 5,883,559 | 33%|28,181,365| 36,082,248| 26%|216,6568,173| 273,160,851 | 26%
02 FASHION 1,959,977 2,096,131 T% 11,570,412 | 13095854 13% 115,069,573 | 125,127,618 9%
03 MENSWEAR 1,988,874| 2995652 50% 15478771 21,456,378 30% 120,760,967 | 145,328,917 20%
04 CHLDWEAR 77,447 123,599 60% 455174 693449 2% | 4,228,201 5,759,498 36%
05 SPECIALIST 5,579,339 3,038,856 | -46% 26,167,107 | 15,858,985 | -39% 189,184,884 | 126,083,323 -33%
07 INTERIORS 1,039,273 2729475 163% | 0,999,337 | 21476114 |1156% | 55,093,852 | 124,615,216 | 126%
08 PERFUMERY 2059,897| 2115680 3% 10,933,145 12,060,825 10% 143,424,067 | 147,902,376 1%
09 FOOD, 178,908 683,621 |282% 427,943 3,840 600 | 800% | 3,191,288 36,615,464 | 1047%

Total 19,656,573 124,573,625 984,613,363
Last Refreshed: 03-Feb-2005 16:00:01 GMT|
iew Wotksheet Mext Refresty Time not svailablel

Product Cateqory Links

€7 Product Category Page - Microsoft Internet Explorer =
File Edit Wiew Favarites Tools Help
Universal Retailers Analytics Dashboard)
BV Logout

Category Product Class Links

Plan Sales |De|la | Ccal s and Furniture
U|)| iolster '}
500 CABFURN 13,873117(13,834,768| 1%
Lighting
510 UPHOLSTERY | 17,973,209(18,340,010| 2% ;
Promotional
515 LIGHTING 2,666,528 | 3,051,580 16% SE & Sewin
530 SF & SEW 6,171,628| 7435937 20% Floor Coverings
535 FLOORCOVE | 12,868,841 13,405,043 4% Mirrors and Pictures
537 MIRR&PICT 790555 §98,358 | 14% Beds & Furniture
540 BEDS&FURN | 20,889,247 (18,851,113 [-11% v
542 TV 16,646,983 | 9,512,562 |-43% Small Appliances
543 SMALL APPL | 10,020,520|11,038,918| 1% Audio Visual
544 AUDIOVISU | 21,707,772|23,585,405| 9% Softwate
550 SOFT 3,200,953 3326424 2% Sendces
Electric Cons
551 SERVICE 374,423| 356593 -5% S
Discontinued
552 ELEC CNS 2,341,582 | 2,265,860 -1%
559 DSCNTNUED 512,047| 472960 -8%
599 DSCNTNUED 7,082 6,790 -4%
Last Refreshed: 14-Jan-2005 14:19:20 GMT
iew Worksheet Next Refresh: Time not availabfe

Figure 3.9: A store manager can use Oracle Discoverer portlets to examine sales
performance for different product categories, drilling down in problem areas to

1dentify products that are selling poorly.

64

Analytical Portal Design

|@ Home Page - Microsoft Internet Explorer =& mJ
Fle Edt WView Favorits Toos Help -'3'
Universal Retailers Analytics Dashboard =
=y Logout

€.
Marketing Category Management

Segment Migration Analysis Segment Migration Trending

Segmentation Migration

‘1M|1M|1M|1mll1m‘
‘%MTmall%nmea\|%ofToiaI|%omeal|%nantal‘

ANONYMOUS. 14.58% | 1299%| 13.45%| 11.91%| 11.49%
CAREER BUILDING 12.91%| 1288%| 11.43%| 1279m| 14.05%
CHILDREN FIRST 20.42%| 2089%| 2255%| 22.01%| 23.48%

MARRIED SOPHISTICATES 2083%| 21.44%| 2z30%| 2203%| 23.19%

OTHERS 14.11% | 1402% | 11.83% | 11.57% 8.21%

SPOUSES AND HOUSES 17.15% | 176S% | 1833 | 1268 | 12.48%

Customer Segment Migration

W AHONMOUS
——) CAREER BUILDING

= 0@
£ 4 CHILOREN FIRST
e
. EBMARRIED SOPHISTICATES

CREY

B—c:"-_——-_. R p—
= A SPOUSES AND HOUSES

010

189302, % of Total 1593-03,% of Total 1883-Qd, % of Total 1893-Q1,% of Total 1889-02,% of Total
Quarter
Last Refreshed: 03-Feb-2005 16:08:13 GMT|

iew Worksheet Next Refresh: Time not available]

Figure 3.10: Oracle Discoverer and Discovery Net services can be combined to

examine the sales figures broken down by customer demographic.

|E InforSense KDE

File Edit Resources View Tools Help
DB EEe S&) -t hxhEs 240 20]) -

Resources [V View]|

| Cross-sell Praducts (Changed) [+] |

‘ Userspace [+ |

A

= B userspace: demo@locahost-1033

=) demn

D Crosg-sell Products

[patabases '@’I’
Build Azsociation Rules
EI Misc Projects Fitter Resutts

B 10gr1

l% ;?DQSRSZ-SEH Products Wﬁkﬁ@—mﬁ

hsaction Data ODM Associstion Rules Fitter Rules Qracle Join Calc Revenue Takle to ARModel

i g

Rulewiz3D

[Tasks [x] |

o ® Name: Transaction Data of Cross-sell Pr ﬁﬁ Ruletviz2DApplethlode
Progress: Completed [Result Saved]

@ Transaction Data (100%)

Product prices =%
2D and 3D Visualisations

3 u I (2] tools

‘Componants [x] |
P Multivariste ~

3 Festureanalysis

m 4 Azzess
=]

“wes Oracle

< | m E

% Data Mining
P oLep

., Pregrocess
[statistics

Node Editor [Rule¥iz2DAppletMode] Rule¥izZDAppletNode - iew |

|Pa| ameters [] ‘Input %] | Qutput (%] | Cache |#| |Histary |«| | CRISP-DM || |Notes [x|

= @) pepioyrert

<]

I RutevizaDappietiode Nude status O «|[~][2
Messages Tasks pending: D Tasks running: 0 [:]l

Figure 3.11: This workflow identifies products which might be best combined

In special offers, examining past sales data to generate association rules.

65

Analytical Portal Design

|@ Home Page - Microsoft Internet Explorer E]
File Edit View Favorites Tools Help J'J’
Universal Retailers Analytics Dashboard .

Logout

<.
Corporate Administration Store Management Marketing Category Management

RFM Analysis [Segment Migration Analysis Segment Migration Trending [Recommended Actions

Service: Customer Segmentation Action Customize Help
The Customer Segmentation action allow a Hide Options | Process Details | Refresh

marketer to select specific customer
segments that will respond to a promotion

Coneltions:
- ! SEX = M AND
» Use demographic data and purchase | |ROLE = Professional anD

history to create rules describing AGE == 44.0
customers who will respond to
promotion

» Use transaction data statistics to
evaluate customers defined by rules

View Segment Rules

Evaluate Prospects
Resuts
Customize Calor | Class | Walue | % Tatal
I— . 2045 [3.979..|51391
18,124 3723 |45,609
< > L
@_‘] Applet treeviewer\HTreeApplet started ‘JJ Local intranet

Figure 3.12: A marketing manager can use Discovery Net services (deployed
workflows) to explore the likely effectiveness of different offers to customer

segments, aiding in the construction of the marketing campaign.

Many people were involved in the development of this demonstration: my
responsibility was for the installation of the Oracle Portal developer preview, the
development of portlets for accessing Discovery Net functionality, and their

deployment on Oracle Portal.

This demo, the first to use prototype Discovery Net portlets, was very valuable both in
showing the benefits to applications of having available easily integratable Discovery
Net portlets, and in informing the design and development of the portlet prototypes.
An overriding requirement while developing the portlets was that their code must be
able to run completely independently of the Discovery Net server environment. This
was unlike the original Discovery Net servlet-based portal, which was hosted within
the same JBoss application server instance as the Discovery Net server, and had some
dependencies on core server code for convenience. As the portlets were based upon

and made use of many of the original servlets, these had to be refactored for

66

Analytical Portal Design

completely remote server interaction. It was also necessary that all Discovery Net
portal code was not reliant on any JBoss-specific settings or features. Having the
Discovery Net portlets deployed to an Oracle Application Server on one machine,
which then accessed the Discovery Net server on a different machine, demanded
resolution of these issues and effectively enforced this code design and the necessary

refactoring.

3.10 Conclusion

In this chapter we have discussed the way the aims and thus technical requirements of
an analytical portal differ from those of a more traditional portal, particularly with

regard to page customisation and the treatment of portlet windows.

We have described the design process of converting the existing Discovery Net portal
from servlets to a collection of communicating portlets, and our resulting technical
requirements for a portal implementation. We contrast this with the monolithic

approach of converting an application to a single portlet.

We then discussed our methods of choosing a portal best suited to these requirements,
and present the results of our comparison. Jetspeed Portal 1.6 was selected for
integration with Discovery Net, and has shipped with the latest commercial version of

Discovery Net, InforSense KDE 3.0.

Finally, we illustrated the value of having portable Discovery Net web components, in
a demonstration retail application which combined the established capabilities of
Oracle Business Intelligence portlets with the power and flexibility of Discovery Net

services.

The Discovery Net portlets developed provide access to the Discovery Net userspace
and allow for parameterisation and execution of workflows. Next we will look in more
detail at Discovery Net's web ‘deployment’ system for workflows, which enabled the

development of our generic Service portlet.

67

Web Interfaces to Research Services

Chapter 4. Web Interfaces to Research Services

The World Wide Web is currently one of the most popular ways of accessing
information over the internet. It is easy to learn to use, and accessible on almost any
networked computing platform. The web has achieved acceptance and everyday use
by many demographics, and has quickly expanded in functionality from the basic
provision of information to more interactive services (e.g. shopping, banking and
gaming). It is not surprising therefore that it has become one of the most popular
channels for researchers to access remote data and tools, whether for pure data
retrieval like searching the literature on PubMed!'” and finding information from
specialised databases (e.g. RCSB Protein Data Bank!'%], NIST Data Gateway!'??), or for
active analysis using online services to process data (e.g. NCBI's bioinformatics

research toolsl'01),

There are of course other methods for accessing remote services. Custom client
programs can be distributed and installed, which themselves provide an interface for
interaction with the service, and communicate with the remote server(s) using
standard or proprietary protocols. This was the approach used by many banks for
providing online account services prior to the Web era (e.g. the US bank Wells Fargo
first provided a service in 1990 on the Prodigy networkl®), but now, as the web has
matured and security features have improved, most provide pure web interfaces
(Wells Fargo was the first in 1995, and in the UK, Nationwide Building Society in
19971621). Special client programs are also often used to access research databases,
typically through a very rich interface tailored to the subject matter. For example, MDL
CrossFirel”) and SciFinder Scholar” provide access to chemical information and
literature, and the Virginia Bioinformatics Institute's pathogen portal project,
PathPort!*8, provides client software to access their array of web services. Another

approach is to not distribute the client software to every users' machine, but instead
68

Web Interfaces to Research Services

install a single copy of a client program - perhaps requiring specific hardware - on one
machine, and share it throughout an organisation through remote login to a desktop or

shell.

Providing a web interface is currently a serious and popular option for new services, as
it requires minimal configuration (if any) of the users' machines, and reduces the need
to train users, who are already familiar with the conventions of web interfaces. Long
term support is simplified, as it is easy to find developers with the web development
skills required, and the interface (hosted entirely on the server) may be upgraded for
everyone as needed, without any intervention by the users. What it mainly lacks in
comparison with custom client programs is the full richness and flexibility of features
that only custom programming can provide. However it is still possible to enrich web

interfaces through the use of JavaScript!®], Macromedia Flash®! and Java Applets!'.

Thus web interfaces are now ubiquitous, for performing all sorts of operations from
tracking parcel delivery, managing a bank account, or using remote analytical software
services. Many networked devices such as routers and scientific instruments often now
include an embedded web server, to allow remote configuration through a web

interface from any PC on the same local network.

4.1 Creating web interfaces

The majority of web interfaces are - like custom clients - bespoke applications, custom-
designed and implemented to access their own particular service (Figure 4.1). Each
web interface is typically a wrapper calling a 'real' service, whose behind-the-scenes
implementation varies depending on the situation: some services might be executable
programs called directly, some might be invoked through web services, others might
have their own proprietary communication protocol. In every case, there will have
been some non-trivial development work necessary to create, test and debug the web
interface in the first place - both the wrapper code, and the design and robustness of

the web form page(s).

69

Web Interfaces to Research Services

BL-EBI

— % 5 Site Database
uropean Bicinformatics Institute Map EEIQnerizs

About EBI

Groups Services Submissions

SIMILARITY

(Rl ez PUESSEL 28 Nucleotide Database Query

* General Help

= Formats WU-Blast2 stands for Washington University Basic Local Alignment Search Tool Wersion 2.0. The
emphasis of this tool is to find regions of sequence similarity or harmology quickly, with minimuarm

- Gapps logs of sensitivity. This will yield functional and evolutionary clues about the structure and function of
= Matrix your novel sequence. DrWarren Gish at Wwashington University released this first "gapped” version of
BLAST allowing for gapped alignments and statistics.
* References =
g_] Download Software
= Wl-Blast? Help
* Mview Help YOUR EMAIL |SEARCHTITLE | RESULTS FROGRAM DATABASE
" DIl HERE I Seguence interactive j IWU—bIastn j INucIeic Acid j
I embl 'I
= View all Blast's at EBI W
« WiL-Blast MATRL DHA STRAND EXP.THR FILTER FILTER FORMAT
Programmatic Access
Idefault j | bath j | default j |dust j | na j | Default j
- Deteliess (el SENSITIVITY STATS SORT topcomboN SCORES | ALIGNMENTS
» EMBL-Bank Inurmal j Isump j | pralue j | default j | default j | default j
* [MGTHLA

Enter or Paste a I DMASRMA, vl Sequence in any format:

Upload aﬂle:l Browse.. | Run Blast | Reset I

Figure 4.1: The European Bioinformatics Institute (EBI) provides a suite of tools
on its website/®¥, most accessible through web interfaces. It provides a dedicated
page or set of pages for each tool, providing users with appropriate
documentation and using standard HTML form controls such as combo boxes to
improve usability. This service allows users to search databases for matches to a
given nucleotide sequence using a BLAST (Basic Local Alignment Search Tools)

algorithm!/'6%.

70

Web Interfaces to Research Services

A tempting approach that has recently arisen permits the automatic generation of web
interfaces, based upon a well-defined description of how to access a back-end service.
Theoretically, if all the services can be accessed using a known standard protocol (web
services using SOAP!7), and the description of each service interface is provided in a
standard format (WSDLII), a script can be written to dynamically generate both
wrapper code and a web form for any service from just the interface description
(WSDL document, e.g. Figure 4.2). Thus, to generate a web interface to a web service, it
is only necessary to obtain a WSDL description of that service and provide it to the
interface-generation script. Such dynamic interfaces have indeed been built (e.g.
soapclient.com™l) and the concept is of great value in eliminating the tedious process

of hand-crafting web interfaces, particularly when many services must be exposed.

However, the generated form interfaces, while functional, have generally poor
usability: the names of input parameters may not be helpful, usage descriptions are not
available, and the web form will usually only provide simple text boxes for entering
parameter values (Figure 4.3). In addition, the returned result will generally be in 'raw'
form, which may not be suitable for immediate comprehension or reuse. These
deficiencies are because WSDL describes the interface syntactically for use by software,
not for humans, and so does not have a standard way to include semantic metadata
describing the usage or type of the service's functions and parameters (Figure 4.2). As a
result, some organisations have come up with extensions to WSDL - some proprietary
(e.g. PathPortl® web services have extra functions such as aboutService and
aboutOperations), others aiming to become standard (WSDL-SI#, DAML-SI74) -

allowing metadata to be included, and so more user-friendly web forms generated.

71

Web Interfaces to Research Services

<tuml version="1.0" encoding="UTF-8" 7=
- «definitions name="WSWUBlast" targetNamespace="http:/ /www.ebi.ac.uk/WSWUBl|ast"
zmlns="http:/ /schemas.xmlsoap.org/wsdl/"
wrmlns: soap="http:/ /schemas.xmlsoap.org/wsdl/soap/"
#mins:tns="http:f fwww.ebi.ac.uk/WSswuBlast"
mins:xsd="http:f /www.w3.org/2001/XMLSchema"
#mins:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
<documentation=Documentation for this service can be found at
http:/ fvewiw.ebi.ac.uk/Tools fwebservices /fWSWUBlast</documentation=
- <typess
- <schema smins="http://vww.w3.0rg/2001/XMLSchema"
targetMamespace="http://www.ebi.ac.uk/WSsSwuBlast"
#mins:wsdl="http:/ fschemas.xmlsoap.org/wsdl/"
#mins:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

+ <complexType name="inputParams"=
+ <complexType name="EBIParams"=
+ <complexType name="data">
+ <usdicomplexType name="ArrayOf_xsd_string">
+ «<xsdicomplexType name="WSArrayofFile"-
+ <usdicomplexType name="WSArrayofData">
+ <complexType name="WSFile"=
</schemaz
</typess

- <message name="statusRequest">
<part name="jobid" type="xsd:string" /=
<documentation=poll takes the jobid returned by the service on an asynchronous job
submission.</documentation:
</message>
- <message name="statusResponse">
<part name="status" type="xsd:string" /=
<documentation=poll returns the status of the job or if the job is finished, the
result</documentation:
</message>
- <message name="resultsRequest":
- «<part name="jobid" type="xsd:string">
<documentation=poll takes the jobid returned by the service on an asynchronous job
submission.</documentation=
< part=
</message>
- <message name="resultsResponse">
<part name="results" type="tns:WSsArrayofFile" />
<documentation>poll returns the status of the job or if the job is finished, the
result</documentation:
</message>
- <message name="pollIRequest"=
<part name="jobid" type="xsd:string" /=
<part name="type" type="xsd:string" />
<documentation=poll takes the jobid returned by the service on an asynchronous job

Figure 4.2: Partial WSDL of a web service provided by the EBI*. This web
service provides access to the same BLAST search tool as that shown in Figure
4.1. The WSDL is very verbose, and not intended for direct interpretation by

humans.

72

Web Interfaces to Research Services

WSWUOEBlastService

Senvice Documentation : Maone

SOAP Method : runWuBlast

ServerfAddress: hitpefhwaney ebi ac ukicgi-hinfwebservice sAWSVWLUBIast
params.prograrm: | wsdstring
params.database: | xsdstring
params.matrix: | wsd string
params.exp: | ¥sdfloat
params.echofilter: m wsd:hoaolean
params.filter: | wsdistring
params.numal: I ¥sdint
params.scores: | wsdint
params.sensitnats | wsdstring
params.sort: | wsd string
params.stats: | wsd string
params.strand: | xsd:string
params.outformat: | wsdistring
params.topcombon: | w¥sdint
params.async: m ¥sd:hoolean
params.email: | wsdstring
content.itemiD.type: | xsdstring
content.itemn0.content: | wsd string
content.item 1.type: | xsd:string
content.item1.content: | wsdistring

Show |RESpDnse 'I Farmat: |><M|_ v[M

SOAP Method : checkStatus

Sonmriiddracc: bt fhaasss: ahi ac nldeni-hinfhvohcordrac SN IRt

Figure 4.3: Generic SOAP clients can read WSDL service descriptions to
automatically create interfaces and call the services. However, as there is very
little semantic information for the end user in WSDL, these clients cannot make
these interfaces user-friendly, and without access to documentation the service
may be practically unusable. This figure shows the soapclient.com'®/ interface
generated from the WSDL in Figure 4.2. Compared to the EBI's custom web
Interface for the same service in Figure 4.1, this interface is clearly far less

usable.
73

Web Interfaces to Research Services

Automatic generation of web interfaces is a concept particularly relevant to Discovery
Net: new workflows may be developed at any time, and providing immediate access to
these workflows through a web interface is a very valuable feature. It is not practical
for the workflow developers (who may not have any programming experience) to
create the web interfaces themselves, so an automated approach is the only sensible
option. Exposure of workflows through web services is also an important feature,

which is compatible with the previous web services discussion.

However, due to the limitations of WSDL regarding metadata, and the lack of a
suitable alternative standard, Discovery Net instead uses its own service description
language, as an extension of its XML workflow description language, DPML
(Discovery Process Markup Language). Rather than using web services as the common
wrapper language between the web interface and the services, we use proprietary
Discovery Net APIs, but the general approach remains the same (Figure 4.4). The

'deployment' of Discovery Net workflows as services is the main focus of this chapter.

Descriptive metadata DAML-S Deployment Layout
Programmatic interface WSDL Deployment Descriptor
Implementation Web service Workflow

Standards Discovery Net

Figure 4.4: Comparing approaches to service description by Discovery Net and

standards.

74

Web Interfaces to Research Services

4.2 Discovery Net Service Deployment

The concept of workflow deployment as used in Discovery Net was first described and
implemented by Jameel Syed ("Information Structuring for Managing Discovery"l'43],
Chapter 7). This model behind deployment is still used in Discovery Net, although

certain aspects have been re-implemented and extended since.

Generally in this thesis, we refer to a deployed workflow as a service. The deployment
process is a form of publishing, so that the workflow may be accessed by end users

with a web browser through the Discovery Net web portal.

The user of a service's web interface must be able to modify the service's parameters,
providing different settings or input data. The simplest approach would be to inspect
the workflow and generate a web form which allows the user to modify any of its
parameters before execution. However, workflows tend to contain many nodes
(usually >5), which themselves contain many parameters (usually between 1-10), and
as a whole are therefore quite complex - especially to someone encountering them for
the first time. In particular, a new user may not be able to tell which parameters on
which nodes can be modified, and which ones have been carefully set by the workflow
creator and should not be changed. Even expert users may find it tedious to have to

search through all the workflow parameters to find the right ones to adjust.

Thus the core idea, and value, of deployment in Discovery Net is that a workflow
developer defines a simplified interface, and the full workflow details are hidden from
the end (web) user. The 'deployment’ process involves specifying which properties and
outputs should be visible and modifiable or executable by the end user (Figure 4.5).
This provides a "black-box" view of the workflow, where the user is aware of the
inputs and outputs, but does not know or care what is going on inside the box, in the
detail of the workflow. This deployed service is exposed by the server, and may be
accessed by third-party clients either as a web service or through the Discovery Net
API (Figure 4.6). Thus, once deployed, a workflow can be used in ways other than the
Discovery Net Java client, from command line clients to web interfaces. The Discovery

Net web portal uses the Discovery Net API to inspect and execute services.

75

Web Interfaces to Research Services

(Workflow h
SN
Property 1 Output
Property 1 |a— —
Property 2
Output
Property 3 [=— |
| | Property 1
Property 4 | :
1, o
| |
I
L 1 |
' \
: I pu
| | | Deployed Service\
| |
| L — — — 4 » Property A
| I
e — — 11 Property B
I
l—» Property C
N

Figure 4.5: Deployment of a Discovery Net workflow is performed by

promoting’ or deploying’ particular node properties and outputs.

Command-line

Discovery Net Server client

Third-party

GUI client
deployment

\
|
|
| Web Service —
:-expose—|:: -
| Discovery Net » Web Interface
.) [API
information II
g J

Figure 4.6: Deployment of a Discovery Net workflow effectively publishes a

——_—— e ——— — —

/
AN

Discovery Net
Java client

service interface to that workflow, which may be used to execute the workflow
either using the Discovery Net API or web services, through a web interface, a

Java client, or a command line.

76

Web Interfaces to Research Services

Although I have been significantly involved in the implementation of Discovery Net's
deployment system and portal, many of the aspects of deployment described below
were designed and developed by other members of the Discovery Net team. The
following descriptions are included in this chapter for completeness and due to their
core significance to the portal and portlets work described in other chapters. The
majority of my work on the core deployment process described here has been in
developing support for custom and complex parameterisation web interfaces, and also

for providing web visualisations of results.

4.2.1 Storage of deployment information

All deployment information is stored in the Discovery Net workflow description,
which itself is stored in the Discovery Net userspace. One workflow may therefore
only have one associated set of deployment information; if an alternative deployment

is required, the workflow must be copied.

4.2.2 Defining the black box

The core procedure in deploying a workflow as a service is to specify:

« Properties : values which may be set by the end user
« Actions : output points on the workflow to which the user may make the

workflow execute (and receive the result from that output port)

As part of normal workflow editing in the Discovery Net Java Client, the user can

select and “promote” any node property or output to deploy it.

One significant advance in version 3.0 of Discovery Net is the introduction of
workflow-level properties, which are visible to all nodes within that workflow and
may be used as variables in expressions to set property values. Thus by changing one
workflow property, users can automatically configure dependent properties in
multiple nodes in the workflow. This feature can also be used as a simple
transformation layer, allowing the end user to input simple values into workflow
properties which are later converted to more complex node property values. For

example, in a node property containing a full SQL query, the end user may only need

77

Web Interfaces to Research Services

to change a small part of the whole query - indeed, it may be unwise to allow non-

expert users to specify the entire query.

Metadata is included as part of deployment. Each deployed property and action has a
name (specified by the deployer) and an optional textual comment, both of which will
be displayed on the web form to aid the user. A description may also be added for the

whole service.

Type metadata associated with properties is also included. Each property already has
basic built-in type information (e.g. String/Float/Date) and constraints, and these have
default rendering modes for web deployment (e.g. text box for String, checkbox for
Boolean). Some properties may have additional web rendering modes or configuration
available and these may also be selected upon deployment (e.g. a multiple selection
might use radio buttons, checkboxes or a list box; a molecular formula could be input
into a text box, or sketched in a custom applet). The implementation of different

property input renderers is discussed further in Section 4.2.3.1.

4.2.3 Creating the web interface

The deployment information, like WSDL in the web services example, is sufficient to
allow the Portal code to generate a web interface to the Discovery Net service. It
includes both the programmatic interface details (the service execution point, inputs
and outputs) and display information (names, comments, layout and rendering

instructions).

Programmatic interaction with the deployed service is performed using Discovery Net
APIs; although it could alternatively have been done with web services, direct access

through the API is more efficient.

The web display of input properties, results, and page layout has taken the bulk of
development time and is the most demanding part of the Portal implementation. It has
been through several iterations, aiming to meet user needs in both the deployment
process and the Portal. Without the advanced display features offered by this system,

the web interface would be far less valuable to the end users, who have high

78

Web Interfaces to Research Services

expectations for usability and customisation when creating web interfaces for their

services.

4.2.3.1 Input properties

Property values are provided by the user through a HTML form.

For simple property types, this is easy and natural - such as typing in a number, or
selecting an option from a combo box. As mentioned, each property already has a

default form element appropriate to its basic type (Figure 4.7).

However, other types are more complex, and may be less suited to being input by
keyboard into a text box (e.g. String values that require a particular format, such as
dates, or SMILES" strings for molecular structures). Such property types may require
custom input mechanisms: e.g. a combination of JavaScript and custom HTML to add
validation or create a more structured form interface (Figure 4.8), or a combination of

applets and JavaScript for full programming capabilities (Figure 4.9).

Service: View Table | AddBookmark | [Close |

Table path
Jdemouserfiris table hal
upload file?

Save as

lUse sample | false |+ |
Sample size |20

Remove Columns |

Takl

sepal_width
petal_length
petal_width

class

Figure 4.7: Basic property types displayed using standard HTML form elements.
A "userspace path" parameter allows the user to select a file from the userspace

or upload one to use as an input parameter

79

Web Interfaces to Research Services

Display column [Conc g0z =]

selected time

[0 =] [dan = |2004 = |09 =30 =]

Snapshot: Specified time and pollutant

iew GLISTO data table

GUSTO - GIS Visualisation Snapshot Enhanced

GUSTO project: data visualisation using GIS viewer. You can look at snapshots

Figure 4.8: A 'Date’ input customised to use multiple combo boxes for more

accurate input, instead of a single text box. JavaScript is used to transfer the

final String value to a hidden form parameter.

1 - Select structures

Structure search on corporate database

Sketch Molecule [OC1=CC=CU=01
Clear| Read SMILES |

White SMILES [I

OH

Enter Substructure

filename.

List Mame : please specify a folder and a

Folder: Ifdemcu‘List ManagemenUSer\ricesfj

File name: Imylist.table
Enter List Mame

Run Search |
Save List |

Figure 4.9: Applets can be used to allow users to input more complex types.

80

Web Interfaces to Research Services

Some properties are dynamic: for example, their list of allowed property values may
change depending on previous workflow executions and different environments.
These properties cannot provide a static list of allowed values upon deployment, but
instead must generate and provide them at the time the service form is presented to the

user.

There is also a question of where and when validation of property values should
happen - it is possible to validate values as the user types them, or just before the form
is submitted, using JavaScript on the client; otherwise the values can be checked on the
server, and if there is an error the service submission must abort and the page reload,
informing the user of the problem. For either approach, validation rules must be

defined for every deployed property.

Fulfilling these requirements may be, and indeed has been, achieved in different ways.

In version 2.0 of Discovery Net, we chose to support "custom types" for deployed
properties, which were configured in an XML file editable by the workflow developer.
Any custom type could be registered as available for any node property, and each
custom type had corresponding HTML fragments which would generate the required
interface in the web form. When rendering a custom parameter in the service form, the
portal would retrieve and insert the fragments of HTML corresponding to that custom
type. This general approach - using XML and HTML fragments to define the property
input interface - enabled any developer to develop a new input renderer for any
property on any node, without needing to modify or recompile code. In addition, as
soon as any custom type interface was developed for a property (e.g. a 'date’ input),
that custom type could easily be registered as available to all appropriate properties on
other nodes. However, this approach could not support dynamic properties, whose
input interface needed to be generated by active code (e.g. accessing a database for
values) at display-time, and as a result these needed special hooks and treatment on

the Portal using an entirely separate mechanism.

The stages in the rendering and submission of a service form are shown in Figure 4.10.
The rendering of a custom parameter is shown for the version 2.0 mechanism of

fetching fragments of HTML to insert into the form.

81

Web Interfaces to Research Services

User's Web Browser ‘ Discovery Net Web Portal ‘ Discovery Net Server

Request service form

1. Retrieve service through API

2. Service deployment description and state H

> 4. Render a String parameter (text box)

> 5. Render a Boolean parameter (checkbox)
6. Fetch custom parameter

>

> 8. Replace special tags with runtime values

> 9. Render custom parameter
> 10. Render actions (submit buttons)

> 11. Render output results (in IFRAME)

Return service form page

User edits service parameters

Submit form

Submit task (asynchronous)

> Repeat steps 1-11 > Task execution

Return service form page

Refresh results IFRAME

Fetch result or task progress

Result or task progress

Return updated results IFRAME

Figure 4.10: Stages in rendering and submitting a service form in the Discovery

Net Portal version 2.0.

82

Web Interfaces to Research Services

In version 3.0, this approach to custom parameters was replaced by a pure Java
implementation, requiring the original developer of a node to explicitly implement or
specify any custom web renderers that the node properties would support. This is a
less rapidly expandable, but more integrated approach, more suitable for modularity
and code maintenance. The portal fetches the custom renderer class from the server
and provides this class with access to the web context information. Thus this approach
can also support nodes with dynamic requirements: Java code (which is executed on
the portal to generate the input interface HTML) is naturally more powerful than
simple fragments of JavaScript and HTML, and can (for example) query databases to
retrieve an up-to-date list of allowed property values. This model can be represented

by a small modification to the previous sequence diagram (Figure 4.11).

User's Web Browser Discovery Net Web Portal Discovery Net Server
| | |
| i i
m Request service form ! !
|
A\

1. Retrieve service through API

> 4. Render a String parameter (text box)

|
|
|
|
|
|
|
I
I
|
|
|
|
> 5. Render a Boolean parameter (checkbox) i
]
I
|
|
|
]

6. Fetch renderer class from server classloader
7. Custom renderer class U
é ,,,

> 9. Render actions (submit buttons)

> 10. Render output results (in IFRAME)

Return service form page

Figure 4.11: Modified procedure for rendering custom parameters in a service

form in the Discovery Net Portal version 3.0.

83

Web Interfaces to Research Services

There is still however inefficiency and duplication of effort for the node programmer,
who must define the input property interface for both the Java Client (using Java
Swing controls and layout with XUL, the XML User Interface Languagel”!), and the web
interface. A more efficient approach, not yet explored, might be to describe both input
interfaces using the same XUL, which the Portal might then automatically convert to
HTML form elements. This would eliminate much of the effort that is currently
necessary for parameters using standard form controls, although it might be difficult to
implement parameter renderers that need to execute code at runtime to generate their
display, and special web-only renderers such as applets would still need custom

implementation.

4.2.3.2 Display of stored data and service results

Users need to be able to quickly assimilate, and sometimes interactively explore, the
results of service executions. Thus the display of result data is critical: either in a
browser through the use of applets or plugins, or with an external program installed
on the client - in which case, the data must be easily exportable. The following
discussion applies equally to service results and data stored in the userspace - whether

these are saved results, or files uploaded directly by the user.

Web browsers are not well suited to visualisation of results, when compared with the
flexible interactive visualisers in the Java client. A variety of approaches have been
tried, from converting the visualisers to Java applets, to creating cut-down alternative
visualisations, to simply ensuring smooth integration from the browser to launch

external programs, such as Spotfirel”!.

Any node output may be deployed to produce a service result, but not all forms of
output data will be suitable for viewing through a web browser. There are two issues
at hand: the provision of the raw result data to the client as a result of execution
through the web portal, and the visualisation (possibly interactive exploration) of the

result data through the web portal.

The first is quite easy to support: tabular and text results are presented using HTML,
and if the node needs to return a binary result, MIME-formatted output will be

downloaded and treated appropriately by the web browser. Some file types will be
84

Web Interfaces to Research Services

automatically displayed by the browser (e.g. images, Figure 4.12), others may be
recognised and launched with the appropriate programs (e.g. Microsoft Office

documents, PDFs), or simply downloaded.

In addition, browser plugins may provide alternative or interactive visualisations of
some file types. For example, the MDL Chime!*! plugin allows browsers to 'recognise'
particular chemical file formats, and once installed, the browser will automatically load
such files using the Chime plugin rather than simply displaying the raw file contents
(Figure 4.13). To ensure that service results (or userspace items) are automatically
loaded by the correct plugin, the Discovery Net portal merely needs to ensure that the

responses include the correct "Content-Type" header for the file type.

Service: IservicesiGUSTOIGUSTO - Graph Visualisation Add Bookmark | Close |

Y axis ||:.3n.;_5|:|2 -] Output for action: Graph Selected Pollutant

Select pollutant to show.

Colour axis IConc_SD2 -]
Zhyph size
I3

Graph Selected Pollutant |
view graph

Graph All Pallutants |

Cong_S02

= = =5 = = = = =5 = =5

) = e o [L) o (5 = BE

= = = —_ — [=] [=] [T%) (4]

= F= [==] (5] (=) = = [==] (%] o
Time

Figure 4.12: Special nodes for the portal generate images (non-interactive) that

may be viewed by any browser.

85

Web Interfaces to Research Services

Test MIME output

Use the MIME output node to display files in the userspace

MIME type: [chemical/spdo
Fill in the MIME type of your selected file. E.g.
textiplain, imagesgit

Select afile:
|."denno.user»’grnel_gammaSATF'.pdb;I

Upload 4 file

Figure 4.13: Installed plugins on the client browser deal with display of
recognised file types. Here the plugin MDL Chime>® displays a PDB%/ result.

Simple example applet output
Example node which outputs applet HTMWL .

Launch

J

Figure 4.14: Output HTML to load an applet showing the result data (the data
may be passed as an applet parameter). The applet must be available for
download to the client, in a known location, so that the node can correctly

generate the HTML.

86

Web Interfaces to Research Services

For interactive exploration of results, it is necessary to use either browser plugins or
custom applets (Figure 4.14). There are several complications involved in using

applets, as will be discussed later (Section 4.3.1), but this is still a popular option.

Another alternative for richer result presentation is to save an HTML-formatted result
with associated resources (e.g. images) to the userspace, and then return its userspace
path as the result which the portal will then recognise and display in full to the user
(Figure 4.15).

However, despite the appeal of interactive or visual data, the majority of service results
will be in tabular or raw form, ready for further processing. Tabular data is displayed
in a formatted HTML table (Figure 4.16), but to reduce download time, only the first
few rows will initially be shown. Links are also available to export the data to a variety

of other formats, including CSV (e.g. for Microsoft Excel) and Spotfirel”.

1 - Select structures

Structure search on corporate database

Qutput for action: Run Search
Molecule |OC1=CC=CC=C1 |5df LSCORE

List Mame : please specify a folder
and a filename.

Foider:
fdemoiList Management/Serices/ j

File name: |mylist table ‘l‘\l‘&\f’:nn
A ' 5090108
Enter List Name %i "\\h»“‘"\\h
Save List |

&77 j‘"' 5090109

Figure 4.15: An HTML-formatted result, with associated resources such as

Images, is saved to the userspace.

87

Web Interfaces to Research Services

Table iris

Table Size: 150 rows
Show sample of: |3t

Export options: Excel (C5Y) TSY XML (WebRowSet XSD) XSF (Spotfire)
[Mote: To download file, use right-click and select "Save As."]

sepal_length|sepal_width|petal_length|petal_width|class

2.1 3.5 14 0z Iris-setosa
448 &) 14 0z Iris-setosa
4.7 3.2 1.3 0z Iris-setosa
46 a1 1.4 0z Iris-setosa
2] 3B 14 0z Iris-setosa
54 38 1.7 04 Iris-setosa
4.8 3.4 14 0.3 Iris-setosa
5] 34 146 0z Iris-setosa
44 29 14 0z Iris-setosa
49 ER 146 0.1 Iris-setosa
a4 a7 14 0z Iris-setosa

Figure 4.16: Tabular data is the most common form of result. The portal
recognises tabular results and automatically presents them as HTML. Options
are provided to save the table to the userspace, or export it to a variety of

formats for further processing in other programs.

4.2.3.3 Page layout

The layout of the web interface is the final aspect of customising the display for a

particular service.

A few default layouts are provided for all services. These use the simple but functional
approach of putting all input properties on the left hand side of the page, followed by
buttons for all published actions, and results on the right hand side of the page (Figure
4.12 - Figure 4.15).

The default layouts are often quite acceptable to users. However, some more complex
services, particularly those with many properties or outputs, can be better presented
with a custom layout (Figure 4.17). The Java Client includes a graphical Layout Editor,
which allows the user deploying the service to specify the placement of properties,

action buttons, and results on the page grid (Figure 4.18). They can also choose which

88

Web Interfaces to Research Services

renderers are used for properties and results, and insert additional elements such as

line breaks or explanatory text.

In addition, the Layout Editor allows the different elements of a deployed service to be
spread out across multiple pages, in a 'wizard'-like set with "Previous" and "Next" page
links (Figure 4.19, Figure 4.20). This is helpful when there are multiple stages within a
single service, so that a user may enter properties on one page associated with the first

action, then go to the next page for the next action and so on.

Service: Image Segmentation Analysis (2) | Add Bookmark | | Close |

Image path

fdemo.user/gismaps folder/Chinafolder/show_cut200_after. gif [Vl
upload file?

Select your input image from the userspace. Image must be in GIF format,
Threshold 10

{range min=0to max=255

Threshold for different levels of segmentation. For the default image, try between
0-40. If the result is all black, try a higher threshald; if all white, try lower.

Qutput for action: View Input Image Output for action: View Result

Figure 4.17: A custom layout for an image analysis service, allowing both the

Input and result images to be shown and compared.

89

IE Deployment Layout Editor

= 4 Layout Components
= 4 Action Buttons
Previous Page
Mext Page

e Insut Image

= 4 Properties
Threshold
Image path

= 4 Output Areas
Wiew Input Image
Wiew Result

= 4 Custom Components
Lahel
Text Area
Line Break
HTML Component
Custom Renderer

rCustomize Layout

Web Interfaces to Research Services

Add Page Rowrs |2

|[Add Rowe ” Rermove FHow]

H Add Colurnn H Remaove Colurnn]

1]

2]

I]’Cumponem Options

= e |
Property “alue
Height
Width
Alignment left

“ertical Alignment [top

Threshold praperty
Image path property

Component Flow horizantal

Style

Yiew Input Image

Wiew Result

[Cancel ” Save]

Figure 4.18: The Deployment Layout Editor. Users can drag-and-drop every

element of the deployed service to their chosen place on the page.

90

E= Deployment Layout Editor

-

4 Layout Components
9 Action Buttons
g Table
J Properties
hciude “index squared” o
hciude Mntecer” column —
umber of rows

J Output Areas
4 I »

~Caomponent Optiors
« | 2| = |
Propetty I Walue |
Renderer |Nex1 Page Action . |

Cancel | Save |

Web Interfaces to Research Services

X

Customize Layout

Add Page | Rows 1 Add Row |
Remove Pace | Colurmnz |1 Add Colurmn |
11205

utnber of rowes

iewv Tahle
=

E Deployment Layout Editor

EH_4 Layout Companerts
4 Action Buttons
Lview Takle
‘J Propetties
hclude "index squared” ©
hclude “irteget" columt

x|

Custormize Layout

Add Page | Rows |2 Add Rowr
Remove Page | Columng |1 Add Column |

umber of rows

1 2|5

‘J Output Areas

~Component Options

«c | 2| = |
Property I Yalue I
Fenderer ‘Euulean Parameha...l

Showy Description ’Irue |

hclude "integet" column
W

hclude "index squared” colurn
[

ey Tableiew Table
=

Cancel | Save |

E Deployment Layout Editor

=4 Layout Componerts
1 Action Buttons
L view Table
1 Properties
nclude 'incex souared” ¢
nclude "integer” column i
urnber of rows
C Output Sreas
4 | 3
Component Options

x|

Customize Layout

A Page | Rows |2 Ao Roww
Remove Page | Columng |1 A Column |

1]z =]
ew Table

e Tahle
| o] = |
Froperty Value |

Fenderer IFrame Renderer

Cutput Height 300

Cutput Wicth 500 v Takle
||Ecrolling auto 4=
|=haw Frame Bar .. Ves

Render Hyper Link |ves

Fender Embedde .. |no

Cancel Save

Layout Editor.

Figure 4.19: Creating a wizard-style service layout, with multiple pages, in the

91

Web Interfaces to Research Services

Service: Iservices/iExamples/Create Table Wizard 4ddBockmark | Close |

MNumber of rows |10

Mext |

Senvice: IservicesiExamplesiCreate Table Wizard AddBockmark | Clase |

Include “integer” column W
Include “index squared” column &

Back I Mext |

Service: iservicesiExamplesiCreate Table Wizard 4ddBockmark | Clase |

Wiew T able |

Output for action: Yiew Table

| »

Table Size: 10 rows

Show sample of [io View |
Export =o¢ rgy AMLOUBML o op gy
aptions: Cutput Output ebRowSet (Spotfire)
Save to Userspace | (Excel fut=]u))
[Mote: To download file, use right-click and select"Save
As
IntegerColumn |StringColumn (IntegerColumnSguared
1 Thisis row 1. (1 -
2 Thisis row 2. 4
3 Thisis row 3. |9
4 Thisis row 4, (16
a Thisis row 4. (24 LI
Back |

Figure 4.20: Wizard-style service layout from Figure 4.19 shown as three pages

in the Portal

One feature that was considered but has not been implemented was the ability to
conditionally hide some elements of the service. This would be useful for services with
branching possibilities: an initial execution of an early stage of the service might close
off or enable other deployed actions and properties. Being able to show properties only
as they became relevant would improve usability. Currently, either the unused
properties would have to be shown and ignored by the user, or the service would have

to be split up into multiple separate deployed services, as discussed in Section 4.4.

92

Web Interfaces to Research Services

4.3 Discovery Net's demonstration scientific applications.

The Discovery Net project included a number of demo applications developed in
collaboration with research groups at Imperial College London and DeltaDOT Ltd." 2.
Our development of the deployment features discussed in this chapter was greatly

influenced by the requirements of these applications and their supporting workflows.

In this section, we introduce the three applications - GUSTO pollution monitoring, GM
Crop monitoring, and Earthquake analysis - and show how their Discovery Net

workflows were deployed to the portal.

4.3.1 GUSTO

GUSTO is a Discovery Net project based in the Department of Physics at Imperial
College London, developing sensors for environmental monitoring. The sensors
determine atmospheric concentrations of particular pollutants (sulphur dioxide,
nitrous oxides, ozone, and benzene) to parts-per-billion (ppb) resolution, by measuring
UV absorbance by the atmospherel'™. Multiple distributed sensors would form a
monitoring network, producing a constant flow of real-time data; the relatively-cheap
GUSTO sensors would be numerous and take frequent readings (every 2 seconds),
resulting in a much higher spatial and temporal resolution than is possible in most
pollution monitoring networks. Such a network requires data warehousing,
visualisation and mining tools to examine both immediate changes and long term

trends (Figure 4.21): some of these could be provided by the Discovery Net platform.

This project's aim was to simulate the use of Discovery Net in combination with a
GUSTO sensor network to store and process pollution data. Analysis workflows were
built to mine the pollution data for trends, and visualisation components were
developed to allow the user to explore the data and results interactively. The data and

analysis services were then made accessible through the Discovery Net web portal.

93

VAN

Web service:
Sensor registry and control
A

:E-:—}% R

Web Interfaces to Research Services

Monitoring and

control software

GUSTO
Sensor
sensor M details | Pollution data
warehouse
Web service:
I:E_— - Data upload
A
GUSTO '
Web service:
sensor

Data access

Archived
weather
data

Archived
health data

sensor

Figure 4.21: GUSTO sensor network architecture.

Layers Data Tables Help

Discovery Net

Server
(workflows)

Discovery Net Discovery Net
Java Client Portal

Visualisation and Public access
data mining web visualiser

J @|!|E:|&|&|W|%| ' ”!.l xlﬂ!l Moran's | | HCluster

¥ EastLondon buildings

Mono Shader

. Mono

R =TE
| @& e i || e fo]
T X}

\:};\

eSS,

v Image (sensor_area_m

Mana Shader

. Mono
J_
¥ Data Overlay \
Mono Shader
D Mono
L /Y
HA ML‘E TS ‘ y - ,‘gp. \‘S;\
rERY PARK\ 4 ﬁ%@/r" \z \7)
S = na >
z 2=\
L LAY

Ready

|7\ DEVONST ™ \2

(RRDIl_"L
AR ‘

o

O

Figure 4.22: One of the identified sensor clusters shown over a map. The Sensor

IDs and common pollutant are shown over the sensor positions. This cluster

contains sensors along main roads.

94

Web Interfaces to Research Services

A common way of storing and displaying information with a geographical component
is by using GIS (Geographical Information Systems)*! software. This allows data
linked to a map to be stored along with the map itself in a vector format. Discovery
Net's GIS map viewer (GISViz), originally developed by Salman AlSairafi'”l supports
one of the older GIS formats: 'shapefiles', developed by ESRI®I. The GIS viewer
displays both the data stored in the shapefiles and a table of data from Discovery Net,
which may be linked to the map vector objects in the shapefile. However this
implementation could not initially display data changing over time, as would be
required for the GUSTO data, and several new features were requested by the GUSTO
team. Some of these new visualisations and the animation feature are shown in Figure

4.22 - Figure 4.24.

=
Layers DataTables Help

J@ BE ala|@| b J.. L] Mnran'sllHC\us{arl IEQ b= @I_m
Loop | stop ~Izuusms/u1 A7:15.00 - 17:30:00

IV qusto sensors

Custom Classifier: Meat
[110133333333333 -
H7s0-900

[l 50.0-139.1333333
[noDsta

Ber Cherts

M Mean_tio

[Mean_noz

W Mean_Ozone
[IMean_so2

¥ Image (sensor_area_p
Mono Shader

[Mona

Figure 4.23: GISViz provides many display configuration options. Here, it has been set up
for a quick overview, using data that has been averaged over 15 minute intervals. Each
sensor location is represented by a bar chart showing the concentration levels for the
four pollutants measured. Only readings of dangerously high pollution levels are shown;
threshold filtering hides those with lower levels. In the background, an aerial photo has

been loaded instead of the vector maps previously used.

95

Web Interfaces to Research Services

Figure 4.24: Snapshots of GISViz animation, showing how the pollution level
changes over time, using the "Surface Layer” visualisation. This visualisation
approach is intuitively grasped by users, although it relies on interpolation

between sensors and can only show one pollutant at a time.

96

Web Interfaces to Research Services

Deployed versions of the workflows in the web portal are shown in Figure 4.25 and
Figure 4.26. The most significant work in this area was in web-enabling the GIS
visualiser. The GISViz application embedded in the Discovery Net Java Client was
extended and modified to allow its use as an applet in the remote client browser, for
interactive visualisation of the service results. In addition, alternate services were
produced which generated image snapshots of the GIS map view: these services thus
returned simple images as results, which are faster and less demanding on the client

machine than the applet approach, though less interactive.

")DiscuveryNet Portal - Mozilla Firefox =10 ﬁl
| File Edit W¥ew Go Bookmatks Tools Help l.(
@ - '% v g o 4 @ I http:jjex . doc.ic. ac.uk: 7080fkweb/Frames jchrame fdnet jwelcome. html j IIQ,

Discovery Net Unifying the o

Ieta-Analy BIviC rch Tasks Logout

GUSTO - GIS Visualisation

GUSTO project: data visualisation using GIS viewer. You can look at snapshaots at particular times, or view the full data in an interactive
applet

une censore

Input data: Man3 Shadzr
| Ademo.user/GUSTO folder/gusto_10h_dpollutants.table 3| =::I’:
Upload a file e et

This only applies to the applet visualisation. You may use the W cone he
default {fully data table, or replace it with a modified GUSTO
data set (.. one containing averaged data). fyou use
averaged data, you will need to madify the "sensars” theme
Data Yisualisation to select a field to display.

Display column: [Conc_502 =

Pollutant concentration to display in the snapshot

selected time: [16.00

Enter a time between 08:00 and 17:59. Interesting times you
rray wish to try include:

IE ene czene
|
C crne ki

yutesens s

Cleasie Cun 5
Ch-lxn
o [C1ee-iLh
Ciae as
L 254322
[SRVERYTY
[Fa)-sak
C-s: 526
[SEELEN Y
— |E 7
Mhrz-ra

W |E 3

SR IR X

Ener-age

Wousa-iie
[l [CR RIS

o [0 - 114

AR RET

+ 09:00- rush hour traffic on main roads
+ 132:00 - midday, quiet
+ 15:30- school pickup; also shows activity at gas
Wirks w"‘
* 17:30- rush hour : 9’ -%é;'ﬁ\\eb
b,

3, = = x =2
fﬁ{%’ \ Lavrimarc . = 7 [CREERREH

Launch interactive applet
iSnapshot Specified time and pollutant I
View GUSTO data table | i

View original graph

| Dane

a»

Figure 4.25: A GUSTO service allows the user to retrieve the pollution sensor
data for a requested time period and pollutant. An image snapshot of a GIS
visualisation is presented to the user. The alternative output uses the GISViz
applet, allowing the user to adjust the map and data layers and animate the

display. The user may also choose to retrieve the underlying data table.

97

Web Interfaces to Research Services

%) piscoveryNet Portal - Mozilla Firefox ol x|

‘Eile Edit Wiew Go Bookmarks Tools Help

CMOM IS

Discovery Net

http: e doc.ic. ac. uk: 7060 kebframes chrome fdnet fwelcome . html

h

|»

GUSTO - Graph Visualisation

GUSTO project. Graphical visualisation of pollutant concentration levels over time. You may show all 4 pollutants on the same graph, or
configure it to select one of the pollutants and a corresponding colour scheme

Y axis: [Conc_s02 =] 140
Select pollutant to show, 130

120

Colour axis: [SensoriD 2]
Glyph size: [3

frange min=0to max=10)

Conc_S02

Giraph Selected Pojutant:

Graph &ll Pollutants I

00302
ZE'RO
9E60)
5P
BZ:5L
0Q:ar
ZEor
PQiLT
9ELT

R
20aL
arar
ZLTT
PEIL
arEr
BRET
OzEL
ZSET

Time

Wiewr original graph

‘ Done

SR

Figure 4.26: A GUSTO service which graphically presents a chosen pollutant’s

concentration over time.

My work in this project focused mainly on the enhancements to the GISViz viewer, and
subsequently creating the workflows and deployed services for the web portal. This
development process revealed the difficulty of separating existing visualisers from the
Java Client in which they were embedded, as all dependencies from the core system
must be removed for the visualiser to be packaged as an independent applet. It also
highlighted concerns with security and data flow, as the applet needed to be able to
download maps and data from the Discovery Net server. Thus full authentication
information (username, password and Discovery Net server address) had to be
provided to the applet using applet parameters. However, the applet could not be
allowed to directly contact the Discovery Net server, as this would not work in the

scenario where the browser is accessing a public web portal but the Discovery Net

98

Web Interfaces to Research Services

server itself is hidden behind a firewall. Thus the portal had to act as a gateway
through which the applet could access userspace files (maps and data). In addition, the
portal had to initially acquire the applet JARs from the Discovery Net server and serve
them to the client browser. For this, the Discovery Net server had to provide an API for
downloading files which were not part of any userspace, but instead were resources

associated with particular nodes.

We also investigated the possibilities of using Discovery Net Portal version 2.0's
custom parameter mechanism to present a lightweight, user-friendly way of inputting
date parameters using JavaScript (Figure 4.8). The method used here is fundamentally
quite simple: the real parameter will always be submitted in the service form as a
single, String value. However, advanced custom parameter renderers can hide this real
parameter’s input field, and add new elements to the form for the user to interact with.
When the user has set a value using the custom interface, the JavaScript inspects this
value and serialises it to a String, setting it as the value of the hidden parameter input.
When the form is finally submitted, the portal ignores the extra form elements and

looks only at the values of 'real’ inputs with names it expects to receive.

This work has been demonstrated at several conferences as part of Discovery Net (All
Hands Meeting 200412, Fourth International Workshop on Environmental
Applications of Machine Learning, EAML 200451), and published in the ECEM/EAML

issue of Ecological Modelling!'¢l.

4.3.2 GM Crop Monitoring

DeltaDOT Ltd.I”?l is a biotech company spin-off from Imperial College London's High
Energy Physics department. Its novel biochip technologies allow fast, high-throughput
and label-free mapping of DNA and proteins using biosensors. In collaboration with
Discovery Net, it has developed use cases and provided sample data for analysis and

mining by the Discovery Net system.

This Discovery Net application concerns monitoring farm fields for contamination by
GM crops. The scenario examined an area centred around a known GM crop test field.

Samples would (theoretically) be taken by hand from many fields in the surrounding

99

Web Interfaces to Research Services

area over a number of days, and each sample would be tested for the presence of GM

material.

x26_B_141003_2:x26_8_141003_4
File Help

;g.m 3 o — x26_8_141003_2
5 x26_8_141003_4
Eom —
w -
e
§.005/—
a
1] }%M llil T J,\LAV\, h],l J|‘L =
-0.005—
- 1.086t - 282.F
0.01]- '
0.013 :_| \ l | l \
5000 6000 7000 8000 9000 10000

Time (scans)

P'ad araphics frame TFrame 238,136 %=6,16e+003, y=0,00911

Figure 4.27: A mirror plot for comparing two protein profiles. The additional

protein in the GM sample is indicated.

The testing would be performed using DeltaDOT's biosensor technology, which uses
capillary gel electrophoresis to identify the components of a cell lysate sample. The
result of the analysis is a profile of the proteins contained in each sample, with each
protein distinguished by its mass. Figure 4.27 shows the mirror plot used to compare
samples; the presence of GM proteins in a sample would suggest contamination by GM

seeds or crossbreeding.

Hence, the main analysis in this application focuses on differences between protein
profiles, which involves the presence or absence of proteins, or changes in the amount

(up/down-regulation) of a particular protein.

Several sets of simulated data were provided by DeltaDOT, each using different initial
assumptions, and I developed the necessary workflows and visualisations to process
the data. The result of this demonstration was similar to that from GUSTO, with an
analysis workflow to analyse and collate the data, visualisations in GISViz, and a focus

on the portal for dissemination of data and results (Figure 4.28, Figure 4.29).

100

Web Interfaces to Research Services

The simulated results were visualised using the Discovery Net GIS map visualiser
(GISViz) to show the distribution of GM material in different fields for five different
scenarios. This required the development of support in GISViz for displaying data
associated with arbitrary locations, in contrast to the GUSTO sensors whose fixed

positions were displayed using a custom map layer (shapefile).

This project has been demonstrated at conferences as part of Discovery Net, and was

published as part of the proceedings of All Hands 2004111,

%) DiscoveryNet Portal - Mozilla Firefox = Ellil
| File Edit Wew Go Bookmarks Tools Help L"
@ - '?,' '@ _vz @ I http:/fex.doc.ic. ac.uk: 7080 kweb/frames)chrame/dnet fwelcome . html j I@,

Discovery Net

e Meta earch Tasks Logout

GM Scenario - Visualisation of results

Results for G Crop Monitoring scenario. You can view snapshots generated for each scenario, or use the interactive applat to
axplore the full results.

The scenarios examined are:
1
2
3
4
5

Wiew All scenanios [Applet] |
Fiesults for Scenario 1

. Random, low level transfer of GM Pollen and Seed
. Heavier transfer to multiple crops |, with some influence due to prevailing winds
. Mo transfer at all
. Heawy transfer, with influence of wind to oilsesd only
As abowe, but assuming effect of physical geography

Data Owerbay
bonaShalzr

W arn

[IELR S

I G pl 2

I non s arp e

Image @verage_wind_direcdony

Man3 Thadzr

I tury
Fiesults for Scenario 3 FEp—
bonaShalsr
. |
Fiesults for Scenario 4 ¥
Fiesults for Scenario &

2 _
1| [»

| Done 4

Figure 4.28: Visualisations of the scenario results deployed in the portal as

GISViz snapshots.

101

Web Interfaces to Research Services

DI'S cove y N et Unifizing the Workd's Knowledge

M eta-Ana Les th Tasks Logout

GM Scenario - Visualisation of results 2

[Yiew results in interactive applet]

Launch GISYiz

Layers Data Tables Help
HEES AP We F BMW Moans| Holuser

Loop Animate |+ Ex 2. heavier transfer to multiple crops | with some influence due to prevailing winds M E

Data Overlay Ex 1. Randorm |, low level transfer of GM Pollen and Seed

Ex 2. heavier transfer to multiple crops | with some influence due to prevailing winds
B toro Ex 3. Mo transfer at all
Pie Charts (Sl i

M ron_ch_sampEx 5. As above, but assuming effect of physical geography
O sh_samples a § 5 :

[] Image (average_wind_d

Maono Shader
. Moo
-
k|
Image (fields_shaded ¢

Mono Shader
. hono

-

L]
[] Image (royston_rmap)

Maona Shader
. Mono
o | -]

L]
Image (royston_phaoto)

[PR - P

T

Figure 4.29: The GISViz applet deployed in the portal allows the user to

Mono Shader

Interactively explore the results. They may switch between and compare
scenarios with different initial conditions, add/remove backgrounds, and filter

results by specified thresholds.

102

Web Interfaces to Research Services

4.3.3 Earthquake Analysis

The Earth Sciences Discovery Net application involves the monitoring of geohazards

such as earthquakes using satellite images.

Pairs of images (Figure 4.30) of the same location, taken at different times, are analysed
to determine how the landscape has changed. By doing this a picture can be built up of

how the surface is moving over a wide area, which is useful for modelling faults and

predicting future movements.

Figure 4.30: The two images of the same area (Three Gorges Dam/Reservoir
Region in China) used for comparison. The source images used in the analysis

are each 32 MB in size.

The analysis process identifies the movement of each pixel for each image pair, using
an image shift algorithm developed by Dr Jinming Ma of the Earth Sciences
department at Imperial College London. This analysis of the large source images is
intensive and requires cluster processing for reasonably fast results. This was done
using 20 computers in the Viking cluster at Imperial (London e-Science Centrel®). For
display, the image is partitioned and the movement averaged to present the result as
arrows overlaid on the original image, showing the direction and magnitude of

movement. This work has been described in detail in several papers!147146142],

103

Web Interfaces to Research Services

I integrated this image shift analysis program into the Discovery Net architecture so
that more advanced analysis workflows could potentially be built upon the existing
single analysis task. In use, the analysis workflow developed would be executed
multiple times with different parameter settings for both the image shift analysis and
the result display. I developed and deployed workflows allowing this complete

analysis procedure to be conducted through the web portal (Figure 4.31).

Because of the relatively long run time for the image shift algorithm, even with small
source images, this application highlighted the requirement for caching when using
deployed workflows; at the time of this demo development, services were not stateful
and so a workflow consisting of multiple stages (e.g. to inspect a visualisation and then
download the raw data, or proceed with further analysis) would need to execute from
the beginning every time it was run. This research approach was later supported in
Discovery Net version 3.0 by the introduction of stateful services, which cached

intermediate results between executions.

-loix]
a) Ble Edt Yew Go EBookmarks Tools Help (=]
& v k@) [hepliexdocicacuk hrome/dn el Ha

>piséovery Net
Browse hiet ch Tas

Image Shift Calculation =

Image shift analysis of a pair of images. For each image, you should upload a raw file for processing, and a jpg/ gif + corresponding
crd file for visualisation

Before image.
[denno. user/gismaps. folde1 AChina, folder/show_cut200_before.raw =]

Upload a file
RAW farmat only

After image:
/demo.user/gismaps. olde1China folder/ show_cut200_afterraw < |

Upload a file
RA Tormat only

Image wicth: [2o0

Image height: oo

Pattem Match window size (pixelsy [i5
Sub-pixel sampling

Search window size {pixels}: [25
This should be larger than the Patiern Match window size.

Arrow width: [ro
Mumber of classes: [i0

(range min=1 to max=20)
arraw colouring

background images
[#dema.user/gismaps. folder/China. falder/show_cut200_after.crd =l

Upload a file o]
image to display the arrows over.
View arrow table
Wiew amaw mage
| | _>I_I
| pone 4

104

Web Interfaces to Research Services

b R
) Fle Edit Yiew Go Bookmarks Tools Help L<
v @ L htedsex donic.acuk: 20hrmon | @

Gechazard Arrow Generation

Load an arrow file corresponding to the China images to generate arrow visualisations

Arrow file path:
[7demo servector3 ame =l

Upload afile

Selectyour arrow file (* arw) in the userspace

Arow width flooo |
Display aitows over Before mage.
Display anows over After image

Yiew original graph

Upload afile
Upload file Browse... |_Upload

[pane 4

Figure 4.31: The Earthquake application allows users to a) first apply the image
analysis algorithms to detect movement by comparing two input images b)
tweak the result display by modifying arrow rendering. This process could

easily be expanded to include further image processing steps.

In this demo, Discovery Net is used mainly to orchestrate the execution of processes on
remote resources, and theoretically the demo could be extended to use a number of
workflows representing different stages in the analysis process. Each workflow could
be deployed as a service, and the services used in sequence, passing data from one to
the next, or repeating stages with different parameters if necessary. Thus it clearly
showed a need for connecting data flows between multiple services, so that results
from one service execution could be passed to another service as input. This informed

our later development of communicating Discovery Net Service portlets.

105

Web Interfaces to Research Services

4.4 Hsing multiple services

Several of the applications studied can use multiple services in sequence to perform a
larger task. An alternative approach is to include all analysis steps in a single
workflow, and deploy that workflow as a single service with multiple sequential
outputs - version 3.0 of Discovery Net stores the state of each deployed service
between invocations (Figure 4.32), so such a workflow can be executed in stages

without having to re-do all the steps from the beginning every time.

o
il

Browse Services ¥ | Tasks T Search
Browse Services

Service Img, 229 Service v (1) [Add Bookma

Running Services | GM Scenario

Eefore image - Wisualisation
jdemo.user/gismaps folderChinafo| o7 eSS 2) g
file? Image Shift
L Calculation
RAM format anly Image Shift
After image Calculation
fdemo.user/gismaps folder/Chinafo (1) |_afte
file? S tati
L=l Segrnentation
RAW format anly Analysis (2)

Image width 200

Image height (200

Figure 4.32: Discovery Net v.3 supports independent instances of deployed

services, each maintaining its own state.

The approach of developing multiple separate services makes sense when the
individual steps may be recombined and reused as components of a different analysis
procedure, or when the steps themselves can each be used independently. This
approach is more flexible, but adds two complications: the user of the web interface
will need help navigating between different deployed services in the right order, and

results must be passed from one service to the next.

This is a very common situation, which emerges in any use of online analytical
services, not just Discovery Net. For example, users of public bioinformatics services

may use multiple websites (e.g. NCBI', EBI®), standalone programs, and/or

106

Web Interfaces to Research Services

programs installed on local networks, and usually have to manually pass information

between tools by copy-and-pasting results.

Data can also be passed between Discovery Net services by copy-and-pasting. A more
efficient method, particularly for large amounts of data, is to have one service save its
result to the userspace, and then the user can select that data file as input to later
services. Again, however, the user must explicitly control the data flow - first naming
the result file, and then selecting it as input. This tedious situation is actually one
which the use of Discovery Net was originally intended to avoid, by orchestrating

disparate tools in a single workflow system.

The standard Discovery Net Portal does not have any special support for guiding the
user between related services, or for passing data between services (other than that
outlined above). In this original portal, all services are accessible from one global
Service Index page, in which services are ordered by their location in the userspace.
This simple approach becomes unwieldy when there are many services to look
through, or when the user must repeatedly return to the index page to find the next

service in a sequence.

The use of portlets can help in both these areas, as discussed in Chapter 3. However,
this is an area which could still use further research to examine orchestration of

Discovery Net services at the server tier rather than the portal tier.

107

Web Interfaces to Research Services

4.5 Conclusion

In this chapter, we have discussed the current popularity of web interfaces for
accessing remote services, and described how interfaces can be dynamically generated
to access well-described services such as Web Services using WSDL. We have detailed
the current problems with such approaches and the importance of service metadata in

generating user-friendly web interfaces.

We have covered Discovery Net's 'deployment’ of services as encapsulated workflows.
The necessity of customised service interfaces, rich input methods and result

visualisation have been outlined, with our implementation approaches.

We then described in some detail Discovery Net's example scientific applications,
which were the drivers and demonstrations for much of this deployment functionality.
They primarily focused on deployment of analysis workflows and the details of the
web interface, particularly developing web-deployable versions of result visualisers
(e.g. the GIS map viewer) using applets. They also revealed the need for stateful
services (caching intermediate result data for use in further executions of the same
service), which was introduced in version 3.0 of Discovery Net, and for transmission of

data between services (a service result being used as input to another service).

We concluded by summarising the issues involved with composing multiple services
together in a larger analytical pipeline, which has particular relevance to the use of

portlets (Chapters 3 and 5).

108

Inter-portlet communication

Chapter 5. Inter—portlet communication

One of the commonest queries from new portlet developers is how to create a link in
one portlet which can trigger a response in a different portlet (typically an Index
portlet which triggers the display of an item in a Display portlet, illustrated in Figure
5.1). The problem stems from the way the portal has to keep portlets from interfering
with each other: clicking a link in one portlet results in a request which is processed by
only that portlet, so all other portlets are completely unaware of the interaction, and
cannot see any parameters that might have been passed. Thus, for this scenario, the
first portlet needs a way to explicitly send a message to the second, informing it of
what action to perform or information to render. This functionality is commonly

referred to as inter-portlet communication (IPC).

User selects a
customer

/

(Customer List Portlet (Customer Details Portleq

[Customer A I/

Customer B none selected

Customer C

Page reloads

(Customer List Portlet W (Customer Details Por‘tleq

[CustomerA | Customer A
e Name

Customer B e Address

Customer C e Orders...

Figure 5.1: Scenario: communication between two portlets

109

Inter-portlet communication

However, the method of inter-portlet communication is not defined in the current
portlet standard (JSR-168), although it will be in the next version. Almost every portal
has its own custom implementation, with different messaging behaviours and APIs.
Non portal-specific (i.e. JSR-168-compliant and portable) solutions are possible, but

require the portlet developer to implement their own IPC system.

Another common request is for a hyperlink in one portlet to navigate to a different
portal page or portlet. Initially this seems trivial, it being the normal and expected
behaviour in non-portlet-based websites: a hyperlink may reload the same page
(perhaps with different parameters in the URL), but is more likely to take the user to a
different page on the server. However in the context of a portlet, there is a fundamental
piece of information which is unknown at portlet development time: the URL of the
target portal page. This is because the portlet is likely to be developed well in advance
of the portal(s) it may eventually be added to: it is developed as a reusable component
with no knowledge of its eventual environment(s). Hence, a single portlet is usually
designed to be self-contained; a link within a portlet usually targets itself with new
parameters that modify its actions or display, and the generation of this URL is

abstracted and delegated to the portal.

When communication between portlets is introduced, the approach of generating self-
referencing links in portlets becomes inadequate, as it may make more sense to
navigate to a different portal page rather than reloading the same one (for example, if
the Display portlet is on a different page to the Index portlet, it is convenient for a
selection on the Index portlet to additionally navigate to the Display page). Therefore,
navigation between pages is a feature sometimes included and discussed under the
topic of IPC as it is often an associated necessity. In this thesis we do not include
navigation between portal pages as a critical component of IPC; however, we do

discuss how limited page navigation might be supported (Section 5.4).

IPC is not appropriate for all situations: sometimes it may be better to develop one
portlet which can perform multiple tasks in different modes, rather than a collection of
portlets that communicate amongst themselves. In particular, if the messages to be sent
between portlets are large or frequent, and the portlets are tightly coupled and must

always be used together in a particular arrangement on the page, this may indicate that

110

Inter-portlet communication

the portlets would be more easily merged into one large portlet. However, if the
portlets are related but only loosely coupled - each being responsible for well-defined
and largely independent tasks - it may be more appropriate to treat them as

components, linked using IPC.

In this chapter we will discuss some of the portal-specific IPC solutions available, the
possible approaches for IPC implementations within JSR-168, and finally our
development of a JSR-168-compliant IPC library.

5.1 Portal-specific IPC Implementations

Portals which implement their own custom inter-portlet communication mechanisms
provide a communications API which allows the portlet developer to concentrate
simply on sending the messages, without needing to know about the back-end

implementation.

Often, the process of linking portlets together with messaging must be performed by a
portal developer or admin, using portal-specific configuration tools or APIs. This is
acceptable for static site layouts controlled by the portal admin, but does not easily
allow changes later. In contrast, the most advanced implementations of IPC can be
configured using web-based control panels at runtime, allowing the end user of the

portal to set up communication between portlets.

As discussed in Section 7.3.3.1, there is some variation in the treatment of portlet
instances, and this affects the way IPC is configured in different portals. Most portals
treat each portlet window as an independent source and sink of messages, and this is
reflected in their IPC configuration tools, where configuration is done in parallel with
creating pages and placing portlet windows. However, some portals are more
restrictive and consider the portlet entries in the portlet.xml registry as the true
portlet instances, so the IPC configuration is tied directly to these and is not associated

with the page layout or portlet window IDs.

Some portals have extended their implementation of JSR-168 to support their own IPC

system; many simply continue to support their own non-JSR-168 portlets, which often

111

Inter-portlet communication

include native IPC support preceding JSR-168 by several years. In either case, use of
the portal-specific IPC solutions, even those that extend JSR-168, will result in portlets
which can only be deployed on that portal. We outline the features and approaches

used by a number of portal-specific IPC implementations below.

5.1.1 BEA WebLogic!

BEA WebLogic manages portlet communication using a system similar to Java
Listeners!'*4l. Portlets can be configured to listen to another portlet, identified using the
source portlet window's unique ID, which is generated by the Portal. Portlet state is
managed with explicit "page flows", which are defined using an editor program. A
message is triggered by a user clicking on a link which corresponds to a named action
in the page flow. When such a link in a source portlet is clicked, the corresponding

function is also called in all listening portlets.

This approach requires the exact communication links between portlet windows to be

specified during portlet development.

5.1.2 IBM WebSphereml

IBM WebSphere's system for portlet communication is called "message events".
Portlets which are in the same portlet application can send and receive messages
(which may consist of any Java object), addressed using portlet window IDs. Portlets
may implement a Messagelistener interface, which includes a function that will be

called when a message is received.

To process messages, the Portal manages the execution of the following, each time a

page loads:

1. all action events (these may send message events)

2. all message events, executing Listener functions on the receiving portlets (these
may send more message events, which will be processed until no more are left)

3. all window events (requests to change window state)

4. all renders (any messages sent during this phase will be ignored)

112

Inter-portlet communication

This procedure allows a message to trigger other messages, in a branching message
chain which is fully processed before the page renders. Because messages may only be
sent in the Action phase, and all message events are dealt with before the render phase
begins, the message state is consistent and safe from any further changes when the

portlets finally render.

WebSphere's advanced IPC system allows portlets to be developed without specific
reference to particular portlet IDs or even agreed message names; the portlets are thus
reusable components independent of any particular portal layout. Such cooperative
("Click-to-action") portlets register with a Property Broker, and a "Portlet Wiring Tool"
portlet allows the Portal user to map connections between published properties and

consumed properties at runtime.

5.1.3 Sybase Enterprise Portall”!

Sybase Enterprise Portal 6.0's IPC implementation uses the Event-Listener model and is
configured at page design-time using custom programs. Published message events are
given global names, and are accessible across the whole portal. Limited types of data
can be included in messages, as the implementation provides messages to portlets as

CGI (Common Gateway Interface) form parameters.

5.1.4 Oracle Portall®!

Oracle Portal (part of Oracle Application Server 10g) has an advanced IPC system
which is configurable at runtime by any page designer. This is a custom

implementation which only works with Oracle's own native portlets.
Oracle defines three different kinds of parameters available to its portlets:

« Private: Private parameters correspond to JSR-168 portlet parameters, and are
only visible to one portlet window.

» Public: Public parameters are defined by the portlet programmer, and make up
the portlet's published interface: the inputs and outputs of the portlet. At
runtime, the page designer can assign values to these parameters (using a

constant, a variable, or a page parameter).

113

Inter-portlet communication

« Page/Page Group: Page (Group) parameters are created and set at runtime by
the page designer, and associated with a particular page or page group. The
page designer can then map them to public parameters of portlets. In this way,
multiple associated portlets on a page - e.g. each showing different information

on a selected item - can be configured by a single change to a page parameter.

Each messaging event, with its associated public parameters, is explicitly defined by
the portlet programmer as part of the portlet's published interface. At runtime, the
page designer can configure the effect of the event produced by a portlet window: it

can set page parameters from event parameters, and/or cause a redirect to a different

page.

Like IBM WebSphere’s approach, Oracle’s IPC implementation allows portlets to be
developed and used as components which are independent of any particular portal

layout, and configured through a web interface on the portal.

5.1.5 eXo Portal*!!

eXo Portal's IPC implementation uses an extended version of the JSR-168
PortletContext to send messages in the Action phase, either directly to a named
portlet or broadcast to all portlets in the same portlet application. MessageListener

classes are registered in the portletxml , using eXo-specific extensions. The portlet
entities referenced by name correspond directly to portlet instances in the

portlet.xml , not individual portlet windows on pages.

5.1.6 Plumtree Portal®!

Plumtree is unusual in using AJAX? to render and update the display of portlet
windows on a page, so that it is not necessary to reload the entire page when a portlet
renders. Implicitly this method relies on the portal providing a way to remotely update
and retrieve a single portlet window's fragmentary content, outside the context of the
aggregated page; this is not a usual feature in portals (see Section 7.3.2.7). This is
however a rendering approach which is becoming more seriously considered, as it has
advantages in efficiency and speed. It does introduce potential problems with usability

and stability, due to the differences in page behaviour (e.g. bookmarks and the 'back'’

114

Inter-portlet communication

button may not behave as expected), and varying support for JavaScript in different

browsers.

The dependence on JavaScript for page rendering allows the messaging logic layer to
be moved from the server to the JavaScript on the client. Thus, a user clicking a link in
a portlet will trigger a local JavaScript function call instead of a direct page submission
to the server. This will in turn trigger JavaScript listeners belonging to other portlets,
which can retrieve updated portlet window renders to display to the client, or redirect

the client to a different page.

Thus, the standard JSR-168 portlet request handling is largely bypassed for messaging,
as all message events are triggered and processed on the client. Messages are not sent
within either the action or the render phase, but in JavaScript on the client, and
messages can be chained as many times as needed. JavaScript message listeners may
invisibly initiate any number of new portlet requests behind the scenes, to update

portlet state and retrieve new window renders.

The IPC configuration (e.g. message names, implementation and registration of
JavaScript listeners) is hard coded by the portlet programmer, and is not modifiable by

portal users at runtime or during page construction.

Since the time of our investigation, Plumtree have been acquired by BEA, which has

rebranded the portal as "BEA AquaLogic User Interaction"®l.

5.1.7 Liferaylsz]

Like eXo, Liferay adds its IPC support by extending its JSR-168 implementation. It does

this by introducing new versions of the JSP tags for generating links in a portlet.

The usual JSR-168 actionURL and renderURL tags generate URLs which lead to a new
Action or Render request targeted to the current portlet, with associated parameters

and any other attributes such as changes of window state or portlet mode.

Liferay extends these tags with a new attribute, allowing the portlet developer to
specify a portlet name to which the new request will be targeted. This approach allows

a portlet to send information to another portlet very easily. However, there are some
115

Inter-portlet communication

limitations: messages cannot be broadcast to multiple portlets, and as the originating
portlet is no longer targeted, it will have no way of knowing what link has been

followed, or even that it has been clicked.

5.1.8 JBoss Portall*'l

JBoss Portal 2.2 provides its own IPC implementation as an extension to JSR-168. Its
approach is to allow listeners to intercept events on the server and modify or redirect

them.

Using JBoss's IPC, the portlet sending a message does not need to write any messaging-
specific code; instead it simply posts the information to itself as a normal Action
request. The receiving portlet will have registered a Listener class at deployment time
(this is configured in a deployment descriptor file). The Listener can inspect all events,
and when it finds an Action event from the named source portlet window, it can
intercept and replace it with a similar Action event targeting the listening (also named)

portlet window.

Thus in behaviour this would act similarly to Liferay's implementation (although it is
more flexible): an Action URL in one portlet can result in that Action being executed on

another portlet window.

116

Inter-portlet communication

5.1.9 Summary

BEA Weblogic
IBM WebSphere
Sybase Enterprise
Portal

Oracle Portal

Exo Portal
Plumtree Portal
Liferay

JBoss Portal

Approach

<
<
<
<
<

Event/Listener

<
<
<

Intercept/Redirect

Configuration

Hardcoded in portlet source v 4
Deployment descriptor v v
Portal page design time v v v v

Run time v v

Messaging features

One to One v v v v v v Vv
One to Many v v v v o (v) v
Message Chain possible v ? v v

Implementation tier \
Server-side v v v v v v v

Client-side (JavaScript) v

Table 5.1: Comparison of Portal-specific implementations of Inter-portlet

Communication (2005)

117

Inter-portlet communication

5.2 Implementation approaches for JSR-168-compliant IPC

In JSR-168-compliant implementations of IPC, the portlet developer must completely
define and implement the details of the communication system. The developer is

necessarily restricted to using only the portlet features and services defined by JSR-168.

Most of the custom approaches to implementing IPC taken by portals are not suitable
for use in a pure JSR-168 portlet, as they require portal-level modifications (usually to

the portlet request processing procedure) that are beyond the reach of portlet code.

5.2.1 Communication Model

The first consideration is the choice of communication model used.

5.2.1.1 Event/Listener

The Publish-Subscribe channel™ is a common messaging model where a single
message may be sent to any number of registered receivers. The sender may
communicate directly and synchronously with the receivers, or it may use a mediating
messaging system, which decouples the messaging agents and allows for
asynchronous operation (e.g. storing messages if a receiving agent goes temporarily

offline).

The Event/Listener model (using the Observer Pattern’*) is an implementation of this
form of messaging which is commonly used in J2EE applications, and is the most
popular choice for portlet messaging among the proprietary IPC implementations
examined. It is well-defined and reliable, allowing programmers to implement and
register Listeners to link portlets with message events. While some portals only permit
1:1 messaging, others allow 1:Many. A proprietary portal has the advantage of
controlling the messaging system, and can as a result improve efficiency by re-
rendering only those portlets which have received messages, and also may support

message chaining.

118

Inter-portlet communication

Unfortunately, this model requires portal-level support to be properly implemented. In
particular, we believe this model is unsuitable for a JSR-168 solution for the following

reasomns:

Firstly, a listener registry and event system must be in place in the portal to call
listeners when a messaging event occurs. This registry must be well integrated, so that
any portlet windows can receive and act upon messages - even if the user has not yet
visited and instantiated the portlet windows in the current session. In the portals
examined this has been implemented in a variety of ways, from various modifications
to the request processing pipeline (e.g. IBM WebSphere) to a mostly client-side
JavaScript/AJAX?l implementation (Plumtree Portal). The portal must also provide
listener configuration tools, which is again reliant on portal-level support to enable

configuration of not-yet-visited portlet windows at runtime.

Secondly, configuration of listeners must be complete before the user can be allowed to
trigger any message events. Once an event has occurred, it is too late to configure a
new portlet to listen to it. This is a design (not implementation) restriction of the
model, but it is exacerbated in JSR-168 due to the lack of information about available

portlet windows.

Thus, the main problems with the Event/Listener model are due to the way the
messaging system must 'push’ messages to the receivers. In the context of a JSR-168
portlet, which has limited or no information about other portlets in its environment
(and no access to a messaging system with more privileged knowledge), this cannot
always be done reliably, and there is also no way of triggering the receiving portlets to

act upon the message within the standard portal request sequence.

5.2.1.2 Interceptor

Some of the custom portal implementations examined (e.g. JBoss Portal) use a simpler
intercepting filter'3!l approach, where portlet actions — normally targeted to the source

portlet — can be intercepted and overridden by a custom handler from another portlet.

119

Inter-portlet communication

This filter generally must be configured as part of the portlet application setup, and
also requires core support from the portal engine; it is therefore not suited to a JSR-168

compliant implementation.

5.2.1.3 Agent Messaging

The messaging models used by mobile Agents!’®? must account for certain limitations

of their working environment that have similarities to those encountered by portlets.

In particular, agents may move to different ‘places’, each of which may contain
elements of a messaging system. At any point in time, an agent may wish to send a
message to another known agent, without knowing where the target agent is located or
whether it is even contactable at that point in time. Alternatively, there may be no

known target, and a message may be broadcast for any agent to pick up.

A portlet with no access to a portal-provided messaging system will also be in the
situation where it has no knowledge of its audience, and no ability to directly address
messages to another portlet. The limited portlet lifecycle (portlet windows are only
‘active” when in either their Action or Render phase, which are triggered only at the
request of a user visiting the page that contains them) is similar to an agent which is

only occasionally connected to a network and able to pick up messages.

Given that we are interested only in agent messaging models where the sending agent
does not know the details of the receiving agent, the Blackboard model’? appears to
be the most relevant. This is a simple model where the sending agent deposits a public
message at each place it visits, and all receiving agents check for messages at each
place. The portal situation corresponds to the simple case where there is only one place
where messages can be stored (and agents/portlets can be present, although they could

also be “offline’).

This simple model has the advantage over Event/Listener of supporting
communication when the receiving agents are not known. It requires a central location,
accessible to all agents, where messages may be stored. Its disadvantage is the lack of

structure: all messages are effectively broadcast to all agents.

120

Inter-portlet communication

5.2.1.4 Message Board

Each model examined so far has both advantages and disadvantages in the context of
portlet messaging. Our final model takes many of these aspects and combines them in
a way allowing optimum flexibility while constrained by the limitations of remaining

JSR-168 compliant and portal-independent.
Particularly relevant messaging concepts for portlets include:

* Decoupled messaging (Mediator pattern('3) using a Message Broker!¥], so that
the sending portlet does not need to know the message’s destination.

* Global messaging (broadcast), as the portlets cannot know of all the possible
receivers.

* Asynchronous and unreliable messaging, as there is no guarantee that a
receiving portlet will ever become active to read its messages.

* Topic-based messaging!™™! (e.g. JMSI'), which is an asynchronous and
decoupled approach to the Publish-Subscribe pattern. This adds structure,
allowing differentiation between messages but without requiring agents to

have knowledge of each other.

We found a combination of the Blackboard model (asynchronous, anonymous,
unreliable) and Topics (structured, mediated) to be the most appropriate for the
environment of a JSR-168 portlet. In this “message board” model, messages may be
published to a public space, and receiving portlets may explicitly read ('pull’) any
messages they are interested in, in their own time (Figure 5.2). This model does not
require listening portlets to be registered before a message is sent; indeed, a new
portlet window can easily be added to a page and configured to read a message that

was sent previously in the session.

To simplify and abstract the sending of messages by portlets, we introduce a
messaging mediator within the portlet application, which manages the distribution of
messages to Topics and the delivery of messages when requested by receiving portlets.

This will be discussed in more detail later in this chapter.

121

Inter-portlet communication

(Customer List Portlet W (Customer Details Portleﬂ

L AN)
' f

Write selected CustomerID
Read customerlD

4 Message Board)
Name: CustomerlD
Value: 3334
Name: OrderID
Name: CurrentUser Value: 135631
Value: admin
\§ J

Figure 5.2: Message board model for IPC

5.2.2 Message Timing

Within JSR-168, we are restricted to sending and receiving messages within the
standard portlet request handling procedure (Figure 2.6). Thus, messages may only be
sent or received in the Action phase (while a request to the portlet is being processed,
e.g. from a form submission) or in the Render phase (while the portlet display is being

generated).

5.2.2.1 Sending Messages

Those portals whose portlet interfaces are close to JSR-168 typically require that
messages are sent in the equivalent of the Action phase. This is because the Action
phase is guaranteed to complete before the page starts rendering, so this policy should
ensure that all portlets on the page see the same messages while they render. If the
portlets were to send messages in the View phase, portlets rendering later on the page
might show views inconsistent with other portlets, particularly if the portal uses
threading to render portlets in parallel. This approach fortunately also corresponds
well with the usual client behaviour that should trigger a message: for example,
selecting an item in an Index portlet to trigger a message from that portlet containing

the item's ID.

122

Inter-portlet communication

However, sometimes a message may be triggered by a non-client event: namely, in
message chaining, where as a result of receiving a message, a portlet may need to send
another message. In this case, the portlet will not have the opportunity to go into the
Action phase to send the message, and if it is to send at all, must do so in the same
Render phase. As this may result in the confusion and inconsistency described
previously, this is not recommended - nor will it support multiple stages of message
chaining within a single page render. This is one of the main disadvantages of using

the Message Board model as opposed to a true Event/Listener system.

5222 Receiving Messages

Portlet windows may retrieve messages at any time when they are active - that is,

during the Action or Render phases.

Portlets can therefore only retrieve and react to messages when a client views the
portal page containing them, and (unless it is acceptable to put 'Update!" Action
buttons in every portlet) this must be done in the Render phase. This goes against the
recommended practice of making the Render code as lightweight as possible. A
slightly more intelligent alternative to the 'Update!' button approach, would be to
detect the presence of the new message and simply present a notification to the user
that the portlet needs to be manually refreshed - but this would still be a very annoying

user interface design decision.

Thus, the messaging is asynchronous and also unreliable - a portlet window which is
never viewed will never read and react to a message sent to it. This is efficient and as
expected if we consider portlets as simple web pages and tools (interface components)
that are only of importance when the user wants to view them. However it does
highlight the point that portlets should never be treated as functional components of
an independent, back-end engine. Rather, it is wisest to treat a collection of interacting
portlets as pure GUI components, front-end widgets, which can each be used to initiate

back-end processes but do not in themselves make up an engine.

Thus for messages to be received, the Render phase must take place, which is usually
triggered when a portlet window is shown on a page. However, to improve

performance, some portals cache portlet render fragments (as permitted by JSR-168
123

Inter-portlet communication

PLT.18) until an explicit action is taken in a portlet, thus preventing the view-phase
reaction code from triggering. There is currently no way of informing a portlet window
that its content needs to be refreshed as a consequence of a message sent from a
different portlet. This is another disadvantage resulting from the lack of portal-level
support for IPC. The only workaround (other than the previously mentioned 'Update!'
buttons in every portlet) is to disable caching for the receiving portlets by setting their
‘expiration-cache' to zero in the portlet deployment descriptor: this may result in
significantly decreased performance. Thus, with caching turned off, it is even more
important to make Render code lightweight, and if this is not possible the portlet
developer may need to implement their own caching mechanism (e.g. storing re-used

data in the session).

5.2.3 Message Storage

A messaging system must provide a centralised point of access for messages, visible to
all portlets. For this, we must make use of shared message spaces which are provided

by or compatible with JSR-168.

5.2.3.1 Communication between portlets in the same portlet application

The best and easiest approach is to store messages in the APPLICATION_SCOPE
session (Figure 5.3), which is accessible by all portlets in that application. This is the
only easily-accessible shared storage place provided by JSR-168, so it is usually
recommended that portlets which need to communicate are packaged in the same

portlet application.

However, the issue mentioned in Chapter 2 concerning the sharing of sessions for
portlets and servlets may cause problems if servlets are expected to take part in portlet
messaging interactions. If the portlets and servlets in the same application do not see
the same session, as is the case with certain portal setups, they clearly cannot use it for
storing and sharing messages, and alternative external message stores (e.g. databases)

must be used.

124

Inter-portlet communication

4 N\

Portlet Application

(Session: APPLICATION_SCOPE]

“service path” message

/

Service Index
Portlet

Service
Portlet

Show a service:

Select a service:
Write
“service path”

Read
“service path”

- J

Figure 5.3: Simple inter-portlet communication using a shared session attribute.
The Service Index portlet provides a list of services. Selecting a service from this
list makes its corresponding interface appear in the Service portlet. This is
implemented by storing the service path in a session variable, in the ‘Application’

scope which is visible to both portlets.

Sometimes the PortletContext is mentioned as a possible storage place for shared
data. There is one PortletContext per portlet application, on which attributes can be
set, but - like ServletContext attributes - these are globally visible to all concurrent

user sessions and are therefore not appropriate for our intended IPC use cases.

5.2.3.2 Cross-context communication, Servlet/Portlet messaging

Web (and thus portlet) applications are kept strictly separate by the Servlet
specification, and do not share sessions. Without any JSR-168-provided shared space, it
is therefore necessary to use a common external message store that is visible to all
portlets, for example an EJB or database (Figure 5.4). This approach is more complex as
it requires the additional setup and maintenance of an external message store, so if at
all possible it is best avoided, by packaging communicating portlets within the same

application.

If communication between portlet applications is required, each portlet must be able to

access an identifier representing the user's whole portal session, not just the session ID

125

Inter-portlet communication

for that portlet's application (which may differ across applications). A suitable

identifier for the portal session may be retrieved through PortletRequest.

getRequestedSessionld()

, but this will only be available once the client browser has

agreed to take part in the session, and will therefore not be accessible on the first portal

page a client visits. Section 7.3.2.5 mentions some other approaches, but none are

completely satisfactory.

N

Message Store
for Session ID

“service path”
message

)

—

£3 “service path”
Session ID, “service path” Dgt:‘rt\)/zfe
Session ID
4 Portal A
Portlet Application 1 (Portlet Application 2
Session: Session:
APPLICATION _SCOPE APPLICATION_SCOPE
™ “
Message Message
Centre Centre
A A
v
Service Index Service
Portlet Portlet
— Write Read
= “service path” “service path”
= J J
J
Web Server

Figure 5.4: Cross-context communication relies on an external message store

and a known portal user session ID to connect the different portlet applications.

126

Inter-portlet communication

5.2.4 Configuration

When developing a portlet which sends a message, some configuration must be done
so that the message can be addressed to its receiving portlet(s). In many of the portal-
specific solutions, the ID of the target portlet window is the configuration parameter
required, and custom tools are often provided to ease the configuration process. In our
"Message Board" model, the public message name is the parameter to be configured,

and must match in both sending and receiving portlets.

The simplest level of configuration is to hard-code the message names (or target portlet
window ID) in the portlets' code. For message names, this may result in naming
clashes, and somewhat restrict the arrangement of portlets in portal pages. For target
portlet windows, this will tightly-couple the portlet implementation to the particular

portal page layout being used.

A slightly more flexible approach would be to define the message names/portlet
windows used in a configuration file (e.g. as initial parameters for the portlets in the
portlet deployment descriptor portlet.xml), which would allow the deployer of the
portlet application (the portal administrator) to modify the message names/portlet

windows used before the portal is started.

The greatest flexibility is provided by the ability to change the message names or target
portlet windows while the portal server is running, typically through a web interface
on the Portal itself. Both IBM WebSphere and Oracle Portal allow such configuration as
part of the page layout editing interface (Figure 5.5, Figure 5.6). This allows new
portlets to be added and communication channels to be dynamically configured at any

time during normal use of the portal.

127

Inter-portlet communication

Ky o
I contamt Appasrsnes | Locks Wiras
Partlat Wiring Taal NEEE

Q Wiras are connactions batweesn portlets, The portlet =
portlets, use the controls in the table below to spacify the

rig tool allows you to view, add, and delete wires. To add a new wire between two
wire datsils and click Add Wire

Wires for page Destination Example

& partet Lerding Target page Target portlet Hic ehwing Wirs Type

Westhaer autCity Destination Example W wakhay ity Public |E

Salec One ... »

| Mansge Actbons...

Figure 5.5: IBM WebSphere's portlet "wiring" tool, a custom portlet that allows

the user to configure the "wires" between portlets on a page at runtime.

Main ' Template | Stde ' Access | Optional | JEEELE L Events | Regions |

Edit Pagye: Bl Reports Page

7]
o

Mew Page Parameter
Enter & narme for the parameter and click Add.

Parameter Hame
| Add

Page Parameter Properties

Enter a display nama, which idantifies the parametar to other users, [you wish, entar @ default valug, and 3 description. Seloct whethar to allow
users to changa the value of the parame ar whan they customize the page. Click 1he delets icon to remova Lthe paramater from the page, and
click the mows icon 1o change the order inwhich the parameters are displayed when vssrs are customizing the page.

Hame Display Hame Default Walue Customizable Description
% YeaPF I‘(earF’F‘ | = I‘fuslr
+ % RegionPP [RegionPP [=3 |Feeggion
+ % DepPP [DeptPR [W [Depanment

Fortlet Farameter Values

Ezpand & portlet towvigw its parameters and specify how to 521 the walues of those parameters. You can mzp podlel parsmetars 10 page
parameters, system vadablas, or consiant walues.

Portlets

Ecpmmacd 41| Coiligms A1l

— Bl Repors Bannar smorer

FEPls . Discomrer Sauges

= HPls : Discowerer List of WWokishests wopaes s
FEPls . Digcoeerer Gauges

*EPls : Discorerer Sauges

®Reports : Simple Pararneter Fomn

= Repoits : Discoverer YWrksheet

Figure 5.6: Oracle Portal's page editing mode, allowing message parameter

mappings to be configured.

128

Inter-portlet communication

5.2.5 Other features

There are several other notable features displayed by the portal-specific IPC

implementations examined:

Oracle Portal includes an intermediate area for messages: page or page-group
parameters, which can be used as variables to set input messages on many portlets at
once. An alternative implementation with the same effect is to permit a single portlet to
broadcast a message to many others, and the equivalent in our "Message Board" model
would be to have many portlets reading from a single named message, which would

correspond closely to the page parameter.

Some portals include redirection to a different page as part of the reaction to a portlet
event. Typically this redirect is to the page on which the receiving portlet lies. We
chose not include redirection as a feature in our IPC library implementation, although
portlets can still redirect to a different page in their Action phase. This is discussed

further in Section 5.4.

The type of data permitted in portlet messages varies from simple Strings to any Java

Object.

5.3 Design of a JSR-168-compliant IPC library
5.3.1 Requirements

Our main interest is communication within the same portlet application, as all
Discovery Net portlets are packaged together, and thus we will assume in the
following discussion that messages are stored in the APPLICATION_SCOPE portlet
session. However, in our actual portlet messaging implementation, access to the
message store is abstracted out and the implementation can be replaced if cross-context

messaging is required.

Hard-coding a pair of communicating portlets to check a known session attribute for a
message is the easiest implementation approach (Figure 5.3), and is appropriate when

the portlets are being developed for a site whose design is static (although maintenance

129

Inter-portlet communication

may become unwieldy if many communicating portlets are required, as the message

names must be kept consistent).

However in our portal scenario, we need to develop portlets as reusable components
that can be added in any quantity to any page, allowing communication channels
between portlet windows to be configured at runtime by the user. For example one
page may have a Service Index portlet window whose selections are displayed in a
Service portlet window on the same page, and a second page may have two more
Service portlet windows which the user has already configured to show two favourite
services. Selections on the Service Index should only affect its corresponding Service
portlet window, not the two on the other page. In addition, the user may be able to
construct their own new pages, and add further portlet windows, which again should

not necessarily interfere with existing communications.

Thus, in a changeable environment where many different types of portlets are sending
out many different messages, it should be up to the user - not the portlet programmer -
which messages the portlet window actually listens to or sends at runtime. Also,
ideally, the internal message identifiers used in each portlet's code should not have to
match those used in other portlets, nor should the portlet programmer have to worry
about naming conflicts with other portlets. For example, a Service Index portlet might
publish a selected service as a message named service_path , while a Service portlet
which works with it would look for the same service_path message to see which
service interface to display. However, the developer of a Userspace Item Viewer
portlet, which was capable of displaying the workflow behind a Service, might look for
the message item_path as input, to see which userspace item to display. Semantically,
the service_path and item_path are compatible: both are simply paths to items in
the userspace. However, as written, it would not be possible for the Userspace Item
Viewer to show a service selected from the Service Index, as the hard-coded message

names they are using do not match.

As a more advanced scenario, it is possible that a portlet may need to dynamically add
or remove message inputs/outputs at runtime, for example a Service portlet which can
switch between showing different services which have different numbers of inputs and

outputs.

130

Inter-portlet communication

We also need to support the situation where a user adds a new portlet window to a

page that uses as input a message which has already been sent (Figure 5.7). As we have

discussed, this is not possible with the Event/Listener model, but is supported by the

Message Board model.

]]]
- Result - Result - R/esult
@eng 7
— - — -
Execute Service Add new Service Portlet Use Result in new Service

Figure 5.7: Scenario where it is useful for a newly-added portlet to be able to
read an existing message. When the first service finishes, the user views the
result and decides that it should be processed further. They add a second service
portlet to the page, and configure it for the next service. At this stage, they need

to take the existing result from the first service and use it as input to the second.

In summary, we require our IPC library to combine the best portal-specific IPC

approaches with further features to support our flexible, dynamic portal scenarios:

Provide an IPC API that is as convenient to use as portal-specific alternatives: it
must be easy to use in existing portlet code.

Allow portlets in both the same and different webapps to communicate (cross-
context communication).

Allow communication between portlet windows on the same or different portal
pages.

Allow different mappings to be maintained for different portlet windows of the
same portlet instance (e.g. multiple Service portlet windows).

Allow a single message to be sent to multiple receivers (e.g. A>B and A>C,
even A2>A).

Allow the portal administrator to hardcode mappings (for fixed portal page
layouts).

Allow portal users to modify mappings at runtime.

Allow portlets to receive as input a message that has already been sent (i.e. not
event-based).

Allow mappings (portlet inputs/outputs) to be added and removed at runtime.

131

Inter-portlet communication

5.3.2 Design

To achieve these requirements we have developed a generic JSR-168-compliant portlet
messaging library which provides the necessary features and presents a simple
messaging API for portlet developers to use. To remain JSR-168-compliant, no portal-
specific code could be used, and some limitations were necessary. Nevertheless this
library meets our needs well, allowing our portlets to be written with clean code and to
communicate flexibly. It is provided as a standalone library and is freely available from

http://www.doc.ic.ac.uk/~mol197/portlets

Throughout this discussion, it should be noted that the overriding requirement of this
design is JSR-168-compliance, and as a result it is not as efficient or robust as it might
be otherwise. The eventual portlet IPC system defined by the next portlet specification
will not have to work within these constraints, and will probably take an entirely
different form as a result, perhaps more similar to existing portal-specific

implementations.

5.3.2.1 Messaging Model

In our chosen "Message Board" model, portlets may publish named messages which
are then available to read at that message box name. Receiving portlets do not by
default consume messages but only read them, so that other portlets may also read the
same message. The messages persist until they are explicitly overwritten, so that any
newly added or loaded portlets can read previously published messages. Thus these
messages act as shared state indicators, rather than discrete events. A disadvantage of
this approach is that the receiving portlets must themselves maintain a history of

messages if they need to detect when a message has changed.

To avoid the problems of hard-coding message names, and to permit users to configure
messaging channels between portlet windows at runtime, we have added a translation
layer (a Message Broker!'¥”// Mediator!'3¥) between the internal message names used in
portlet code and the public names of message boxes visible at runtime to all portlet
windows. Thus, in its own code a portlet may refer to a particular output message as
"path", but in the portal, the message box to which the message is sent may be

configured by the user, e.g. to "Service path for page 1". Similarly, the user can

132

Inter-portlet communication

configure the names of message boxes from which the portlet reads each of its input
messages. This process of message mapping allows both 1:1, and 1:N messaging
(Figure 5.8), as every message channel includes an intermediate message box. It does
not however support N:1 mappings, e.g. combining 2 boxes into 1 input, or 2 outputs
into 1 box. In practice, this approach to abstraction is similar to Oracle Portal's use of

‘page parameters' (5.1.3), although less strictly scoped.

4 Portlet Application A
(" Session: APPLICATION_SCOPE)
“path” message |
Message Name Mapping |
4|)
Userspace Index Service \
Portlet Portlet
Select a service: Show a service:
Write Read
“item path” “service path”
-

/

Figure 5.8: Abstraction of message names. The messaging library mediates
access to shared messages, allowing mapping of local names (hard-coded in

portlets) to global names (user-configurable at runtime).

5.3.2.2 Configuration

As previously discussed, configuration of IPC may be performed, with increasing

levels of flexibility, at:

« Portlet programming time (in code or configuration files)

« Portlet deployment time (in default or initialisation portlet parameters)

» Page development time (with custom tools or through a web interface on the
Portal)

* Runtime (through a web interface on the Portal).

The latter, most flexible, option is what we require.

133

Inter-portlet communication

Approach Advantages Disadvantages
1. Configure in Mappings are kept together with Need to edit and save every portlet
each portlet their portlet (intuitive.) Efficient, as involved in the communication -

mappings are only loaded when a potentially cumbersome

portlet window is first viewed.

2. Configure ina | All mappings can be edited and More complicated for user, if there
single "wiring tool" | seen at once - fast. are many mappings visible. All
portlet mappings are stored in a single

portlet, which would need a way of
accessing information about all the

portlet windows in the portal.

Table 5.2: Approaches to storing IPC configuration: GUI presentation.

Approach Advantages Disadvantages

1. Store in portlet |Easy to implement, JSR-168 Each portlet window must be

preferences mechanism. Flexible: configuration [instantiated/viewed to load its
can be set as default preference configuration from the preferences,
values by the administrator upon so other portlets will not be aware
deployment, or by the user at of its mappings until then.
runtime.

2. External to All portlets can access the full Extra work and dependencies in

portal configuration at any time. Supports | setting up and managing an
cross-context communication. external store.

Table 5.3: Approaches to storing IPC configuration: storage location.

The possible approaches to storage and configuration of the message mappings are
summarized in Table 5.2 and Table 5.3. While a single "wiring tool" portlet would be
the most elegant approach for configuring message mappings (and is the usual
approach taken by custom IPC implementations) it is not possible to implement
effectively without portal-level support for retrieving a listing of all portlet windows
on the site. Therefore we must spread out the mapping configuration among the
portlets to which the mappings belong: allowing configuration of each portlet's input
and output mappings in its own Edit mode. For storage of mappings, we decided to
use the portlet preferences, as a simple and flexible mechanism which allows values to

be set both upon deployment and at runtime by the user. However, we additionally

134

Inter-portlet communication

propagate the mappings to a centralised Message Store when the portlet first loads,
and in this way can optionally support cross-context communication by providing an

externally-persisted Message Store implementation.

To achieve this, the portlets delegate to a shared Message Helper in the application
session to publish and read all messages (the Message Helper in turn delegates to a
pluggable Message Store). When a portlet first loads, it registers its inputs and outputs
through the Message Helper, and from then on the Message Helper refers to and
modifies these local-to-global message name mappings as required. The mappings are
defined and saved in each portlet's parameters, using the standard parameter
persistence mechanism, and may be modified in each portlet's Edit mode. A simple but
generic implementation of this edit mode is shown in Figure 5.9: the interface is
dynamically generated by inspection of the messages in the Message Store and the

current portlet's messaging configuration.

The main disadvantages of this approach are:

1) Both ends of a communication channel must be separately configured: both the
sending portlet's output mapping and the receiving portlet's input mapping.

2) Existing mappings (e.g. available output messages) will only be included in the
configuration dialog after their parent portlet window has been rendered in the

user's current session at least once.

The user interface for IPC configuration could potentially be improved greatly using
AJAX?, but unfortunately this is not possible with JSR-168: AJAX requests, which call
servlets, cannot access portlet window services such as portlet preferences, in which
the messaging configuration is stored. If however the configuration were to be stored

externally (e.g. in a database), an AJAX configuration GUI would be feasible.

135

Inter-portlet communication

Service Index Portlet

ElEZF =8

Folder to search |

Set up message mappings
Qutputs:

Local Output

service_instance_name

Mame!

service_path

Narme!

Message Mappings

Publish to Target

Mew global output:

IMy zervice instance nan
MNamespace! |

Mew global output:

IMy service path]
MNarmespace; |

Save I

Service Portlet

Select
Service

Bookmark
Params

Display
Size

Message
Mappings

= I v

Advanced
Options

Set up message mappings
Inputs:

Local Message Read from Source

service_instance_name | My service instance narne ;I

—

service_path | My service path

Save |

Cancel |

Figure 5.9: Dynamically-generated mapping configuration forms, accessible in

the portlet's Edit mode at runtime. Two portlets are shown, the first configured

to publish messages, the second to read them.

136

5.3.2.3 IPC Library Code

Inter-portlet communication

® Messageltils

® MessageHelper

o8 M3 String

OS prepareMappingarmi)
& processhappingFormi)

¥
I

MezsageHelper and
Messageltils are for
direct use by portlets.

o

wirterfaces

(1] MessageCentre

& MessageHelper()
@ get()

@ getAsStringl)

Os gethessageCentrel)
& getPortietiDn) | s@ocesss
& wetPortietindowiDi)
o getZession|DE)

& loadPrefer)

& zavePrefs()

@ =end()

o =etloadedPrefa()

initializes the MessageCertre and

through the MessagingFactory.

On first loading, the MessageHelper

the helper class SessionlDRetriever

ACCEEER

I
I
I
&

I

addinputhtapping)
addOutputhspping)
clear AlOutputhappings)
clearinputhapping)
deletelnput()
deletetutput)
findinputSourcel)
findinputSourcel)
findCutput Taraets()
et
getalinputkieys)
aetAlCutputieys()
getBomes()
getinputkeys)
getCutputieys)
aetPublicBoxkeys()
iV alic)

zend(]

zetEtarel)

L= =T = T R I T = R = = = = I I = <]

!
I
|
I
I
I
I
I
kT

® MessagingFactory

A

of classes: Hashhap <K V=

® MessageCentrelmpl

OS gethessageCentre)
C.lS getSessionlDRetriever)

O, store: Messagestore

The MessagingFactory
inspects the MessageConfig
to see what concrete
implementations to use for
the SessioniDRetriever and
the MessageStore.

o

\I/ imports

Laimparte o

winterfaces

O MessageStore

I

|

| zimpatts
FACCESSE |

zinterfaces
© SessionIDRetriever

@ getSessioniD()

® MessageConfig

of DEBUG: String

o MESEAGE_STORE: String

& default_properties: Hashiap <k V=

% SESSION_ID_RETRIEVER: String

o debug()

| message PortletMessaging properties ﬁ

clear Aloutputhtappings)
deletelnput()
deleteCutputi)
findOutput Targets()
getAlinputkeys)
getllCutputkeys)
getBoxes()
getinputi{ey =)
getinpLtSource()
getMessage()
getCutputieys)
aetPublicBoxkeys()
intializel)

iz alicd)
savelnputhMapping()
saveOutputtspping)
zendhessade()

L= =T = T T T B = N < = = = <

Figure 5.10: UML diagram of the IPC Library

137

- -

The MessageCentre iz the
local (in session) irterface
tothe MessageStore.

The MessageHelper's anly
access to messages is
through the MessageCentre.

Each portlet message input
or output is uniguely identified
by a MeszageBoxkey.

Each 'public' message box,
which can be mapped to a
portlet input or output, is also
idertified by & MessageBoxkey.

_cimport.

_<import.

_ simports, | @ hashCodel)

o]
® MessageBoxKey

Gy local: bool=an
@, name: String
G, namespace: String

OD MeszageBoxkey()
OD MessageBoxkey()
o MeszageBoxdey()
@ compareTal)

@ equals()

@ formString()

& parseFormStrinal)
@ toString()

The concrete MessageStore
implementation may store
messages in the session, or
it may simply be a lightweight
wrapper which accesses an
external Message Store.,

Inter-portlet communication

ginterfaces
© message.SessionlDRetriever

@ getSessionlDo)

______ -
[[T T |
| | @ LocalSessionlDRetriever | : | (c] NamespacedLucalSessinnIDRetrieve+ |
T
I | |
© PortletRequestSession|DRetriever | | @ RequestAttributeSessionlDRetriever | | © CookieSessionlDRetriever
ginterfaces

O message.MessageStore

clear AlCutputhisppings)
deletelnputl)
deleteOutput
findOutput Targets()
getallinputieys()
getAICutputey=0)
getBoxes()
getinputieys
aetinputSourcer)
gethessage)
getCutputieys)
getPublicBoxKeys()
initizlisel)

iz alicd])
savelnputhapping)
savesutputhapping)

e @@ @ o 000000 Q0

sendMessage)

I_____[Il____l

® EJBMessageStore ® BasicMessageStore

d: EJBMezzagestorel) d: BasicMessageStarel)

Figure 5.11: Concrete implementations of the MessageStore and

SessionIDRetriever interfaces, included in the library.

138

Inter-portlet communication

Figure 5.10 shows the components of the portlet messaging library. The main class
intended for direct use by portlets is the MessageHelper , which provides a simplified
interface appropriate within the context of a portlet window. The MessageHelper

allows portlets to refer to both incoming and outgoing messages by their own local
names, with no explicit reference to the mapping that eventually happens at runtime.
The MessageHelper must first be initialised with the portlet window's ID, but from
then on it will be able to automatically translate each local name to an appropriately
namespaced or mapped MessageBoxKey , which is the message's global unique name.
The MessageHelper then passes on (or fetches) the message to the MessageCentre

(and hence MessageStore), which acts as a centralised point of access for both
messages and message mappings. Example code that could be used in a portlet's

processAction and doView functions is shown in Figure 5.12.

a)
public void processAction (ActionRequest request, ActionRespon se actionResponse)
throws PortletException, java.io.lOException {
PortletSession portletSession = request.get PortletSession(true);
String id = getWindowID(request);
String msg_session_id = MessageHelper.getSessionID(reques t);
MessageHelper helper = new MessageHelper(portletSession, id, msg_session_id);
String myAuthor = request.getParameter(" myAuthor ");
helper.send(" author ", myAuthor);
}
b)
public void doView(RenderRequest request, RenderResponse respo nse)
throws PortletException, IOException {
PortletSession portletSession = request.get PortletSession(true);
String id = getWindowID(request);
String msg_session_id = MessageHelper.getSessionID(reques t);
/I'load this portlet's inputs and outputs from pref erences
MessageHelper.loadPrefs(request, id, msg_se ssion_id);
MessageHelper helper = new MessageHelper(portletSession, id, msg_session_id);
String broadcastAuthor = helper.getAsString(" author ");
writer.write(" Selected author: "+broadcastAuthor);

Figure 5.12: Code fragment showing the use of the IPC library to a) send a

message in one portlet b) receive a message in another portlet.

139

Inter-portlet communication

When implementing portlets that use the IPC library, the portlet developer must
include the messaging library JAR in their portlet application, but does not need to
make their portlets extend from any special portlet class. Rather, they can treat the
messaging library as a separate service to be loaded and called when needed. Of
course, as it is not a standard, only portlets which have been designed to use this

messaging library will be able to communicate with each other.

When initially loading the MessageHelper , it is necessary to read in the message
mappings from the portlet preferences. This is best done in doView , as this will ensure
that the MessageHelper is properly initialised as soon as the portlet is first displayed.
Once loaded, the mappings are cached in the session, so that subsequent calls to

MessageHelper.loadPrefs in doView do not add more overhead.

As previously mentioned, and shown in Figure 5.12, the portlet developer must
provide a portlet ID to uniquely identify the portlet window to the MessageHelper .
The portal's ID for the portlet window is not directly accessible through JSR-168, but
workarounds are available as discussed in Section 7.3.2.4, and the MessageHelper

provides several functions which can be used to retrieve or generate an appropriate

window ID.

The exact implementation of MessageStore used is easily configured through a
properties file. Hence for example support for cross-context communication with an
external MessageStore can be configured without recompiling the portlet code. In
addition, the implementation of the SessionIDRetriever is also configurable, due to
the issues mentioned in Section 7.3.2.5, and can be used through the MessageHelper as
shown in the example code. The configurable parts of the messaging library are

illustrated in Figure 5.11 and Figure 5.13.

Thus, the use of the portlet messaging library is split into two parts: first, the code for
sending and retrieving messages in the portlet, which uses the local input/output
message names, and second, the configuration of message mappings to set up message
flows, which can be done either in the default portlet preferences (e.g specified in the
portlet deployment descriptor, portlet.xml), or at runtime by modifying preferences

of individual portlet windows programmatically.

140

Inter-portlet communication

4 Portal Server)
// Dartlat Annlinatinn \ \
— Portlet Application
(Portlet]
L - Portlet Window ID J
IPC Library A
4 .
A SessionlDRetriever] EJB Container W
Core Messaging Library
MessageStore |« » EJB Message Store
\]
o J G
G J

Figure 5.13: Some components of the IPC library can be easily replaced with

different versions most appropriate to the situation.

5.4 Page Navigation

As previously mentioned, navigation between pages is often a desired side-effect of
sending messages, usually to visit the page which contains the portlet receiving the
message. There are a few problems that make the implementation of this feature

difficult.

One technical restriction is that a portlet can only change the page (by sending a
‘redirect’ instruction to the client browser) in the Action phase, as this is the only time
that it has access to page headers. Thus, messages sent from a Render phase (as might
be done in response to receiving a message) will not be able to trigger page changes.
This means that IPC-triggered page changes can only happen with primary messages,
sent directly as a result of a user's click - which will probably usually be the desired

case anyway.

Secondly, there is the problem of configuring the address of the page to redirect to.
This address is entirely situation-dependent, and will be different for each portal
implementation, and each website layout. Currently, the user must always look up this
address and configure it manually in every instance of the portlet. Even in the case

where we know Portlet A always sends the message to Portlet B, and wishes to

141

Inter-portlet communication

automatically navigate to the page containing Portlet B, there is no way for the portlet
code to find out the target page address using the Portlet API. Ideally, we would want
to be able to present (at runtime) a user-friendly configuration interface in the portlet
itself, allowing users (or just page designers) to select the target page from a list of all
available portal pages. But again, due to the lack of a portal-context-inspection API (as
discussed in Chapter 7), this is not possible without using portal-specific code, and
instead we are forced to require the user configuring the portlet to find out and type in

the full target page URL themselves.

The page-navigation feature is not currently included in our Portlet Messaging Library,
due to these technical and design issues. However, they are not critical and may be
acceptable if the need is great enough and the limitations are made clear, so this feature

may be introduced in the future.

5.5 Limitations of the IPC library

The restrictions of the IPC library are mainly due to the limitations of working within

JSR-168, and so cannot be practically resolved at this time. These include:

+ Sending messages in the Action phase (not mandated, but highly
recommended).

* Receiving messages in the Render phase (thus view caching must be disabled
for receiving portlets).

* No explicit support for message chaining.

* Requirement to obtain an ID for each portlet window.

In addition, the current interface for modifying message mappings in the IPC library
could be made much simpler to use and understand. A more intuitive presentation
would be to allow the user to click & drag to connect outputs to inputs, using
JavaScript. Implementing such an interface would have to overcome several concerns:
a) an intuitive GUI would need to be developed allowing the user to configure
messaging between portlet windows on different pages, b) portlet preferences on more
than one portlet window would need to be saved to create a single connection, which

would require multiple 'update/save' requests to the portal.
142

Inter-portlet communication

Such a messaging configuration interface would be possible using AJAX, but would

first require some additional portal features:

» Centralised support and management of message mappings.

* A method permitting servlet endpoints independent access to portlet windows
(e.g. for background-saving of portlet window preferences using AJAX).

» Reliable consolidation of servlet and portlet sessions.

* Methods to retrieve details of other portlet windows present in the portal,
including those which have not yet been visited by the user in the current

session.

5.6 Conclusion

In this chapter we have introduced the topic of inter-portlet communication and

discussed its implementation in different portals.

As one of the main contributions of this thesis, we have described the design and
implementation of a JSR-168-compliant IPC library. This library is available for
download at http://www.doc.ic.ac.uk/~mo197/portlets . The first release was in
July 2005, and a version supporting messaging between portlets in different portlet

applications was released in September 2005.

Despite the limitations described in Section 5.5, our library still provides a portable,
flexible and easy-to-use implementation of IPC for JSR-168 portlets, as a viable

alternative to portal-specific solutions. In summary, the IPC Library's features are:

» Simple API
0 Messages are public and have a two-part identifier: namespace + name.
0 Message contents may be any Java object
» Flexible, loosely-coupled communication between portlet windows
o Configuration in portlet.xml default preferences, or through editing
portlet preferences at runtime

* Messaging within or across portlet applications

143

Inter-portlet communication

+ Pluggable Message Store for different concrete implementations

Portal-specific IPC systems are still generally superior for reliability and integrated
messaging, however our library has several advantages which not all portal-specific

solutions support:

» Portability through JSR-168 compliance

* Choice of static or run-time message configuration

* Development of completely decoupled messaging portlets

* Late binding to message channels (due to the lack of a strict Event/Listener

system)

Future developments for the IPC library will probably include support for page
navigation alongside sending messages. While this is not a concept that is strictly tied

to messaging, it is a commonly-associated and often-requested parallel feature.

In the process of developing this library, we encountered a number of general
limitations with the JSR-168 specification which we have detailed in Chapter 7 and
provided as input to the working committees for the next versions of the Portlet and

WSRP specifications.

While the focus of this work has been on JSR-168, the WSRP specification is closely
related, and so the discussion of messaging models is also relevant to the programming

language-independent portlet environment described by WSRP.

In the next Chapter we will describe the development of a real-world portal for
Translational Medicine, in which both inter-portlet communication and the Discovery

Net Service portlets are fundamental components.

144

Translational Medicine Portal

Chapter 6. Translational Medicine Portal: A Case
Study of a Complex Portal

In this chapter we illustrate the concepts which have been explored in this thesis so far,
with the development of a real-world analytical portal composed out of
communicating JSR-168 portlets. This puts into practice the work done in developing

the Discovery Net portlets (Chapter 3) and the IPC library (Chapter 5).

The Windber Translational Medicine Portal project is the only one of the applications
examined so far that has been developed for production use. The project started in

September 2005 and is ongoing;; its first production release was in February 2006.

6.1 Aims of the Portal

The intention of this project was to create a web portal which provides both researchers
and clinical physicians with access to the archive of patient data that has been built up

by the Windber Research Institute® over many years.

The first aim was to allow users to interactively explore the available data (initially
concentrating on data from a breast cancer study) using summary views, drilling-
down through clinical records and questionnaire answers, and selecting groups of
patients for follow-up analysis or studies (for example: all patients on a particular

medication, who have shown particular symptoms).

Secondly, being able to navigate from the broad overview of aggregated data down to
view the detailed clinical data for specific patients in the selected categories was to be a
critical feature for this portal. Thus after selecting a set of patients, the researchers
needed to be able to both retrieve the details of the patients within that set, and use the

set as input to analysis workflows for further research.

145

Translational Medicine Portal

6.2 Design Challenges

The Discovery Net server and portlets were clearly suitable for the analysis part of the
project, allowing researchers to produce analysis workflows and deploy them to the
web. However, the ability to browse the patient data was an entirely new application,

which we will therefore describe in some detail.

The ability to browse aggregate statistics summarising the contents of a data
warehouse is provided by Business Intelligence products using OLAP (On Line
Analytical Processing), e.g. Oracle Business Intelligence Discovererl®l. Typically, such
products allow users to view pre-configured or customisable tables of statistics, drill-
down to view statistics for subsets of data (e.g. sales figures for a particular month),

and generate graphs; Figure 6.1 and Figure 6.2 show this in Oracle Discoverer.

However, most OLAP systems were unable to provide the second requirement: the
connection from the aggregate results back to the individual data points which
originally made up those results. For efficiency, these systems rely on pre-calculated

statistics (stored as ‘cubes’), and maintain no connection back to the source data.

We therefore took the approach of developing our own OLAP-inspired system. The
patient data under consideration was reasonably small and unlikely to increase rapidly
in size, compared to the massive data warehouses which make pre-calculated OLAP
cubes necessary. This allowed us to perform all calculations in real time, directly using
the source data, which simplified development and ensured that the most up-to-date
information would always be used. The resulting system was able to retrieve both

aggregated information and the corresponding underlying records.

The database setup, data cleaning and import was an important part of the process,
managed by database experts at InforSense and Windber, who also created an interface
class (DatabaseProvider) for all access to the database. My responsibility in this
project was all parts related to the web portal: the binning web interface, the OLAP-like
browser, patient set management and patient viewing. Each of these functionalities
was implemented as a JSR-168 portlet, for later inclusion alongside the Discovery Net
portlets in a portal (we used the Jetspeed 1.6 portal embedded in the Discovery Net

server installation). Figure 6.3 shows an overview of the whole project.
146

Translational Medicine Portal

3 Incidence of Hyperiension 2 - Microsoft Infernet Explorer _F.. Ff: '}_(
= »
Fle Edt Wew Faorbes Tosk Help ﬂ- = Lrds Aekns 't. .r?.\.
-
CORACLE Discoverer Viewer
Business Intelligence Praferences Exi Help
Connac] > Worbogks =
BF & Diet--rmaster - Incidence of Hypertenszion 2
Lagl run Hovember 14, 2004 6230240 PM P51
Actions Incidence of Hypertension
Een ot e ¥ Table
PTools Lowou Fomred Focsoh Sod Fovs and Colmans
lypertension || Incidence Count
i i
1 Low BE
2 Momal HF
Workshests] High 7
Incidence of Hypedension .
Incidence of Hypesension .
Hyperdension, [iel, Smoki ¥ Graph
Sfiriuly of impardance b-Tools Goaoh
Ineldence of Hypertension
klarss Ceaml
Bis= WEams @sah
Research has found that dhet affects the development of bogh blood pressure, or hypertennion
(the medcal term). Recently, bwo shadies showed that blood pressure can be lowered by
fu[luwmg a particidlar eating plan—alled the Dietary Approaches to Stop Hypertension
{[LASH) eatmg plan—nd reducng the amount of sodmm consumed
Preferences | Ext | Halp
Coxpeprigil (o000, 2004 Crachke Corporabion:. AN rights reserved "
2 N Localingranet

Figure 6.1: Oracle Discoverer allows users to view statistical summaries of large
amounts of data, through a web interface. Here, a simple table is shown, with
one variable, "Hypertension ', which has three possible values, each represented
by a row. The "Incidence Count" column shows the result for each row. A pie

chart shows the same data. (Image from Oracle documentation®)

147

D Praduct Sales By Region 7 - Micoosall Internat Faplarer

Fla £l Wew Fiorte: Tooh Help

] et - o ke ooy cncserer G Bkt Rt s] Quartarticly_uhisfb 8 stly_dkowstts_godiimleps ek po v (0] G0

EE%
Qua- O = =

Translational Medicine Portal

CHRACLE Disroverer Viener .
Bu o il Pratoesrcny Bl Loomd Hel
Cpane] > Pisifgoly 1 Ll g o
Froduct Analysis - Proeduct Sales By Reglon 2

set mon Novembes 17, 2004 55630 PM PST

VTP aramuters

cHionsy
e Seleci values far the Izlleemy paramebers
W=l = okl ot el
3 = Erfie Fasduct 2
2 = I by ¥ TREL
o s - Catagany Elicironcs”, Panphanids Sod Acca
y [LET T .
e
Nerashesl opfong ¥ rosstab
Tleoh xced Pasal Sdat Pews and Columns
& Rows (25 s Colymns 128 =
= : Oa

T

Clusrter

Hegion Prad Cateasry
[* Fiod Cwtegor
Amaricas e

BN Prod Subs #legony

P Mari

1

Hy 'ﬂi" y AN Hepraichign © | Profity Anslysis Prodect # ll’-'mduu-g_ur 4 BBt

P-M:It ;m.ﬁi ﬁ‘;;-cr:" Cirdl #o Rielabid # 034 Prod Subcategorylgd 38

Hardwars gal Frod M 05 50

Peripherals and Accessaries BI12382 TOT.TETAY AT

Eurape El#ctranics B0 696 67 BE8.A421.88 1,087

Hardware 16846443 34 | E31 386846 1511

Peripherals and Accessories 2,40 25064 202372185 228

Oceanda | Elect s 142 E18.70 120,734 75 15

Hardware M7 MI22T2E68 2%
Peripherals and Accessaries J2046640 BT M4

?':?r.:ph 2

i »

]] el kot

o1

JT3T1563
3073997 48

4

Sales Revenues 3
nk|

1 224 B8 43
200137575

2. 14l

2.1

Figure 6.2: Oracle Discoverer showing a more complex table which contains

two categories as rows ("Region" and "Prod Category"), and one category

("Quarter”) as four columns (QI1-Q4). The two categories shown as rows are

hierarchical; the second category is nested beneath the first. Users can add

additional levels of categories to further subdivide each row. (Image from

Oracle documentation'?/)

148

Translational Medicine Portal

Oracle Database:
Clinical Data
&
=6= Questionnaires
- = “
Database
server
' . N
JBosps Application Server (J2EE)
(Discovery [Net Portal N[Discovery Net N
Server
A
(Binning Portlet "\ Retrieve/Save (™,
binning data &
Create and manage | "1 O
binnings on columns) o Oracle plugin nodes
.E (IOE) in the workflow
° Retrieve) 3 access the database
. Retrieve o detailed Patient Viewer
(OLAP Browser Portlet | aggregated | @ patient data Portlet ,
4 3 Service
patient data © : .
Interactively view P < View detailed data Workflow
aggregated patient data. [=) for a single patient
Select interesting Answer research
categories of patients.) questions using
Retrieve/Save selected sets of
patient sets patient data
Selected patient set Ve ~)
Patient Sets Portlet Selected patient
»| Manage and select sets i
of patients for use in Parameterise and
other portlets execute workflow
[Discovery Net \ I /
Service Portlet
Selected patient set(s)
1 L
Use patient sets as
input to analysis
= \ workflows)
—
=
N J
\ ="= A A Y,
Discovery Net v
and Portal server

\
Web Browser Web Browser DISCOVGI’Y Net
Java Client

Browse data and select Create and edit workflows
patient sets as input to
execute workflows
ﬂj
Research partners can Clinicians browse both Researchers answer
browse aggregated data, individual and aggregated clinical questions and
but not details of individuals patient data test research hypotheses

Figure 6.3: Overview of the Windber Translational Medicine portal.

149

Translational Medicine Portal

6.3 AJAX (Asynchronous JavaScript And XML)

The web tools developed for this project make extensive use of the AJAX?") style of
web development, which allows pages to be unusually responsive and interactive. This
method uses JavaScript on the client to communicate directly with the server while the
user is reading the page, retrieving information in the background in response to user
actions. JavaScript is then used to update the displayed page’s contents, modifying its
Document Object Model (DOM) directly; thus the page does not need to be reloaded in

full from the server for every small change, as would be necessary without AJAX.

The AJAX approach requires an endpoint on the server for the JavaScript to fetch
(usually a dynamically-generated page which takes query parameters). In the context

of Java web servers, this endpoint would typically be a servlet or a JSP.

Figure 6.4 shows the process of requesting and displaying a normal (non-AJAX) web

page, which may be compared with the modified sequence using AJAX in Figure 6.5.

Web Browser Java servlet Java servlet

Visit a page

Fetch page

Tl I
Retum page //) Generiate page
e T -

Show page

Interact with page

\) Generate page

Show page

Figure 6.4: Interactions on a normal web page (not using AJAX).

150

Translational Medicine Portal

‘ Java servlet

Fetch page

Event Handler

‘ Java servlet
i
I
|
|
|
|
I
|
|
|
I
I
|
|
|

Generate page

\

N
s

Return page

Web Page DOM

Update display

Web Browser

Visit a page

Parse DOM tree——————

View page

Interact with page

Process response

!

———» XMLHttpRequest
Create
Register callback
Dispatch request

nt Create

Dase DOM eve
\ :

Update display

<

View page

A

Figure 6.5: Interactions on a web page using AJAX. Based upon a diagram from

the IBM developerWorks article "Ajax for Java developers: Build dynamic Java

applications %,

151

Translational Medicine Portal

6.4 Portlets developed

A number of custom portlets were developed to meet Windber's specific requirements,
and are discussed below. These JSR-168 portlets use the portlet messaging library
(Chapter 5) to communicate with Discovery Net portlets, and so were deployed, for
convenience, within the same portlet application as the Discovery Net portlets. They
could have been deployed in a separate portlet application, but it would then have
been necessary to set up an external message store for cross-context communication,

which we considered an additional complexity worth avoiding.

6.4.1 OLAP Browser

The OLAP browser presents an interactive tabular view of the data, and also allows

users to generate bar charts as an alternative visualisation.

Categorical attributes (or binnings), which we will refer to as categories or dimensions,
can be added to the table as sets of rows or sets of columns, with an entry for each
possible value of the category. If both rows and columns contain categories, the
resulting table is a cross-tabulation (crosstab) where each data cell contains the

intersection of a pair of category values.

"Measures" are numerical aggregate values, calculated over a particular set of data, and
define what information is shown in the table. A measure is defined by an aggregate
function applied over a numerical attribute. For example, the record Count

("Count(CBCPNum)”) or average Age ("Avg(Age)”).

Typically, a user will add a category as a set of rows (one row for each possible
category value), and several columns containing numerical measures (Figure 6.8 shows
the configuration of rows and columns, and Figure 6.6 shows the resulting table). The
data cells in the table will then show the measures corresponding to each row. Each
cell can retrieve its data using a unique database query, made up of the measure and
the row information which effectively acts as a filter (e.g. "Avg(Age) WHERE
Occupation="Teacher'"). Users may also add categories as columns, where a single

category results in a group of columns being added to the table, one column for each

152

Translational Medicine Portal

possible category value (Figure 6.10). When adding a categorical column, the user must
additionally specify a measure as usual. The resulting crosstab changes the way each
data cell constructs its query: the filter for selection now includes parts from both the

row and the column.

Users may view the data from any row in the table as a graph (Figure 6.7), or export

the underlying raw data (Figure 6.9).

Preseniation: (new) on fable clinical core path combined
Deseasg®E +q @
Hierarchy [Edit rows] [Edit Calumns]

P 5. Education

c o
e | 2| = o
o e H T
= o c o
21 £ o =
= [1] - w
o - L o
Category -5 < = =
E 8. Educaticn il 2383 5143 100.0% 100.0%
Advanced Degree #3264 5087 1592% 19.2%
Associate Degree # 128 4737 5.9% 9.3%
Bachelor Degree * GZB 4950 220% 22.0%
High school graduate ¥ 392 5565 164% 164%
Mo high school ¥ 10 703 04% 0.4%
Some College #4490 3001 20.5% 20.5%
Some high school ¥ 59 57.94 258% 2.8%
“alue not set * 404 5233 168% 16.9%

Figure 6.6: The OLAP browser showing a single category (‘Education’) as rows,
and several columns with numerical measures. A single row category can also

be visualised using a graph, showing the data for one column (Figure 6.7).

153

a Bar Charts - Microsoft Internet Explorer

Translational Medicine Portal

Current Category "8. Education"

Average Age - I
Participant Count

Percentage
Local Percentage

1| | -

; Bar Charts - Microsoft Internet Explorer — Ellil
Bar Chart =11| Bar Chart
Current Category "8. Education"
Showing column Participant Court x Showing column:
| P B. Education | P 8. Education
€ Ciick on 2 harto drilt-down
600] a0 |
500 i
1 &0
400 1
30
300 40
200 7 all
, 20 |
100]
1m0
0" o 0 0 ag @3 &= 0 0 @
g9y d sy oo
Do 3 £ = £ o o o
o o T 29 O 0O o @
ooa g e o 2 aﬂ‘ [=-1
T g5 ER T o
SEasEBEZs &k
£E8£228027> £
:ag 0 H 23
3 a0 = « c-;; <<
=
T
8. Education

€ Ciici on g bar to dritt-down

Bachelor Degree
No high school
Some College
Some high school
Value not set

High school graduate

8. Education

11|

Figure 6.7: The information in the OLAP table can also be viewed graphically.

=lolx|

3 Edit Rows - Microsoft Internet Explorer

Edit Rows

-

Available Categories

Pathology Checklist
= Core Questionnaire
3.00B
= 4. Age 2 Binnings
Age binned by 20 yvearshi
Age binned by decade i
5. Sex
6. Ethnicity
6.1, Ethnicity_Other_Descrptn
T Marital_Status
3 Education
B 9. Occupation Binning
Occupation binning i
Cancer_Relative_History
38 Leg_Clots_History_YM
39 Hormone_Trtmnt_Rcoy YN
40 Haormaone_Trtmnt_Type
41, Harmone_Trtmnt_Type_COther_Descrptn
42 Harmone_Trtmnt_Known_Length_vM
44 Hormone Trimnt Correnthe Row Y™

Hierarchy

8. Education

<l Add Column - Microsoft Internet Explorer

Ba Numerical

Categorical

Basic Columns

v Participant Count

v Average Age

¥ Percentage

v Local Percentage

‘ Add selected columns I

Cloze |

154

Translational Medicine Portal

3 Add Column - Microsoft Internet Explorer =10] x|

142 Biopsies_Right YN = [
145, Right_Abnormality_Palpable_YMN [

146 Right_Abnormality Loc [

147 Biopsies Left YN [

150, Left_Abnormality_Palpable YN =

151, Left_Abnormality_Loc [

152 Mammogram_YM [#

153 Last_Mammogram_Date kKnown [

154, Last_Mammogram_Date =

155, Last_Mammogram_Results [

156, Ultrasound WM [

157 Ultrasound_Date Known_ YN [=

158. Ultrasound_Date [+

159. Ultrasound_Results = |

.| Add.
Count Microsoft Internet Explo x|

B—_"0phatase_Test YN (¥
1 osphatase_TeSt_Date ¥ @ Add a new group of 7 columns?
LaddAnather.. |-20006 YN ¥
164, Consent_01-20007 YN [
171.BC_Prior_History BC =
172.BC_Prior_History BC_Breast [+
173.BC_Diagnosis_Date_Known YN [
174.BC_Diagnosis_Date |
1758 BC_Treatments
176.BC Comp Treatments Lislt ¥ _I;I
»

Cancel |

4]

Figure 6.8: Configuration of rows and columns in the OLAP browser.

155

Translational Medicine Portal

3 Data - Microsoft Internet Explorer o |w] 4

Raw data for row =

39 underlying records

Export to CSY (right-click to download)

| CBCPHUM |BREAST TISSUE_WON_BREAST(PATH_CATEGORY|PRO_PRO_1_PRO_COD_1|PRO_PRO_
¥ 1 Left null Benign PO 2003-08-2(
padd Right [null Benign PO 2003-08-0:
£ Right [null Invasive FO3 2001-08-0¢
e 4 Left null Benian P15 2004-05-0¢
(L] Shap Right [null Atypical FO2 2003-07-27
i 1 Right |null Benign POz 2004-05-0.
LU Left null Abypical P02 2003-11-2¢
{1tk Right [null Invasive FO3 2003-08-2(
14 Left il In gitu FO1 EDDS-DjSLl
RN >

Figure 6.9: The raw data records (individual patients) underlying each OLAP

browser row.

Presentation: (new) on table clinical_core_path_combined
D sees® /6 @
Hierarchy [Edit rows] [Edit Columns]

P 5. Education

159, Ultrasoun

‘E = P
3 | § 2|
(1} @ = % °
& = = c w n
s | = 2 | E 3 5
o = “‘ = i c
ko i = 2 = @
f=1 . L= o
= 0D F=1] % wu 3
[© = 5 3 o
Category L5 - = = = >
[=] 8. Education i 2383 2692 150 VO 242 293 383 33 1207
Advanced Degree * 5364 2581 34 10 31 54 52 & 177
Associate Degree * 128 26860 M 2] 15 23 32 1 40
Bachelor Degree = 926 2618 47 14 70 67 a1 13 218
High school graduate 392 2857 13 16 47 48 74 5 189
Mo high school] 10 2750 0 a 1 a & a 4
Some College 490 2725 34 11 e 71 g4 4 222
Some high schoal x| B9 2706 7 1 7 B 13 2 33 b
Yalue not set * o404 2783 4 g 12 24 32 a 324 |

Figure 6.10: The OLAP browser showing a single category as rows, two
numerical columns, and a single categorical column (a group of columns),

resulting in a crosstab.

156

Translational Medicine Portal

This basic layout is enhanced by the ability to "drill-down" into rows: users may
expand a particular row of interest and add an additional category beneath it as a new
set of rows (Figure 6.11). In early prototypes of this system, users would select a
category to expand before expanding any row, and in this way different categories
could be shown at the same 'level' of the graph: e.g. with a top level category of
‘Occupation’, the "Occupation=Teacher" row could be expanded to show ‘Exercise’, while
an "Occupation=Housewife" row might be expanded to show ‘Education’. This allowed
complete flexibility in viewing data, but the Windber researchers found it too complex
and suggested a simpler approach. Rather than allowing full choice with every
expansion, they preferred to define a ‘hierarchy” of rows once, which would fix which
categories should be expanded at each level. For example, a row hierarchy containing
"Education > Exercise> Exercise Frequency" would ensure that all expansions of
‘Education” rows would result in a nested set of ‘Exercise’ rows, and then any
expansions of ‘Exercise’ rows would expand to show nested "Exercise Frequency" rows

(Figure 6.11, Figure 6.12).

Thus, users can select attributes and construct measures of interest to create their table,
and drill down through the row hierarchy to examine the aggregate information about
groups of patients with particular attribute values. They can also customise details of

the table display, hiding rows and columns or re-ordering them.

Once the user has identified an interesting group of patients, they can then select the
corresponding row, which is defined by a simple "select" query appropriate for
accessing the database (e.g. "Ethnicity="White’ AND Age_binning="40-50" AND

”m

Exercise_Frequency="Once a week’"). This process is the only one which results in a full
portal page reload: this is so that the select query can be passed along by the portlet
code to the Patient Sets portlet, using the portlet messaging library. Patient Sets, each
defined by a select query, can then be used on other portal pages — e.g. to view the

details of their contained patients, or to use sets of patients as input to a workflow.

157

b)

Edit Rows =

Translational Medicine Portal

/2 Edit Rows - Microsoft Internet Explorer =10 il

Available Categories

Hierarchy
Pathology Checklist
B Core Questionnaire 132. Exercise_Length M
3 DOB
=4 Age 2 Binnings
Age binned by 20 yearsi
Age binned by decadelil
5. Sex
6. Ethnicity
6.1, Ethnicity_Cther_Descrptn
7. Marital_Status
3. Education
= 9. Occupation { Birning
Occupation binningli
Cancer_Relative_History
38 Leg_Clots_History M
29 Hormone_Trimnt_Row YT
40 Hormaone_Trimnt_Type
41 Hormone_Trtmnt_Type_Other_Descrptn
42 Hormone_Trtmnt_Known_Length_v™
A4 Hormone Trimnt Currenthe Bov Y1 =

131. Exercise_Freq &

159. Ultrasound_Results [Count]

e g

3 c =

| E s | e

= = o £ o

= = =] E =

=3 = » L s

& @ = | & =

t 0 g‘l 3 o

[™ = = 3
Category o = T = &

(=] 132. Exercise_Length e 2385 2692 130 70 242 283 388 33
18 min or less x| 39 2863 3) 3 T 6 a
15 to 20 minutes £ | 2810 8 S T 9 7 0
20 to 30 minutes #1192 27355 15 8 15 a0 a8 &
(=l 30 minutes or mare ¥ R34 2608 48 29 T3 101 106 11

131. Exercise_Freq [l (for 132, Fxercise_Length="30 minutes or more’)
1 time per week or less * BR 2708 9 4 & B 10 2
1to 3 times a week =127 2759 8 4] 16 19 29 2
Jtimes aweek or mare #4400 2585 I 18 a1 76 GB7 T
MNewver @ 0]]] 0 0 0 0
Unknown = 0]]]]]]]
Yalue not set = 1 288 0 1 0 0 0 0
Yalue not set ¥ 144 2722 76 27 144 146 231 16

Figure 6.11: Defining and displaying a row hierarchy in the OLAP browser.
a) A row hierarchy configured with two categories.
b) Expanding an "Exercise"” row to show information for the second category in

the hierarchy "Exercise Frequency'.

158

Value not set

1207
17
20
g0
266

Translational Medicine Portal

Presentation: exercise and smoking on table clinical_core_path_combined
Usess +H @
Hierarchy [Edit rows] [Edit Columns]

}132.Exercise_Leng‘th }131.Exercise_Freq }125.Sm0ke_Past_‘r’ear_‘r’N }129.Length_Smoke_Free_Known

- @
c =]
3
2 g | 3 :
=
©] o
a > £ @
o bl i =
= @ = o
[> 7] (=]
Category L5 < o =
H 132. Exercise_Length FEEL 2383 2592 2143 100.0% 100.0%
13 min ar less #E 39 2863 G060 1.6% 1.6%
15 to 20 minutes #E, 54 28.10 24.85 2.2% 2.2%
20 to 30 minutes *E, 192 27.35 20589 8.0% 5.0%
[=l 30 minutes or more #E 534 26.08 47 .86 26.6% 26 6%
131. Exercise_Freq F]"—E (for 132, Exercise_Length="30 mindtes or move”)
1 time per week ar |ess #E gE 27.08 4510 27% 10.4%
1to 3times a week ®E, 127 27.39 45.85 9.3% 20.0%
Bl 3 times a week or more =& 440 2555 47 54 18.4% 63 4%
(For 132, Exercise Length="30 minutes or more’ and 131,
125. Smoke_Past ‘Year YN |.IJlll Exercise Freq="3 times & week or more’)
= Mo #E, 389 2556 458.69 16.3% 88 4%
(for 132, Exercise_Length="30 minutes or more’ and 131,
129. Length_Smoke_Free_Known Ly Exerclse Freq="3 times a week or more’ and 125,
Smoke Past Year YN=Naol)
No ®E, 26.1 64 0.0% 0.2%
YWES ®E, 107 2568 a5.59 4.4% 27.5%
Walle not set #E, 281 25582 4562 11.7% T2.2%
& ves #|E 51 2546 3966 2.1% 11.5%
walue not set EAL]] 0.0% 0.0%
Never ®& 0 0 0 0.0% 0.0%
Unknown #E, 0]] 0.0% 0.0%
[value not set ®E, 288 a1 0.0% 01%
[Yalue not set HE 1464 27.22 93.14 B51.4% 51.4%

Figure 6.12: Multiple levels of row expansions, governed by the row hierarchy

(shown above the table).

The OLAP browser uses AJAX to allow the table presented in the web browser to be
very responsive and interactive. JavaScript is used to asynchronously fetch data in the
background and update the table on the page, without reloading the page from the
server. Thus the methods mentioned above of constructing database queries for each
cell are useful; each table cell has its associated query sent to the portal server, and
updates immediately when its result is received. Users can view the result in each cell
as soon as it arrives, rather than waiting for the entire table of data to be calculated and

rendered in a single page request.

159

Translational Medicine Portal

The OLAP browser was developed as a set of JSPs, as it was meant to be accessible
independently of the Jetspeed portal. A simple wrapper portlet was developed which
embedded the interface into the portal page using an IFRAME.

The display state of the OLAP browser (the table layout: its columns, the row
hierarchy, its expansion state, and the ordering and visibility of rows and columns)
was preserved in the session, so when users navigate to a different page on the portal
and later return to the OLAP browser, it shows the table exactly as they last left it.
Display persistence was also necessary when generating a CSV export of the table,
which needed to be identical to the table layout seen in the portal. Whenever the
display state changes as a result of AJAX requests, AJAX was also used to update the
state in the session. An alternative persistence approach well-suited to AJAX
applications is to store state in a client-side cookie, but in this case the information
needed to describe a complex table layout was potentially too large (cookies have a

maximum size of 4KB).

6.4.2 Binning

A binning helper application was developed to allow the user to customise the data for

their needs.

The underlying data consists of a number of patient records, each patient identified by
a unique ID ("CBCPNum’ in the screenshots). Associated with each patient may be any
number of questionnaires and items of clinical data (e.g. tissue sample test results). In
this phase of the project, it was considered acceptable to view this as a flattened record:
every questionnaire answer or test item can fundamentally be viewed as a simple

attribute of the patient.

Attributes (e.g. a questionnaire item) can be either numerical (e.g. "Age’, with
continuous values) or categorical (e.g. ‘Occupation’, with a set of possible values). Both
numerical and categorical attributes can be binned, and a binned attribute is by its
nature categorical (e.g. “Age’ may be split up into 4 bins, of <30, <50, <70, 70+). It can
also sometimes be useful to apply binnings to categorical attributes to simplify them, as
these may contain free-form answers with many semantically similar values, e.g.

“Teacher’, "Primary school teacher".
160

Translational Medicine Portal

A web interface was developed allowing users to create new binnings on columns, and

perform a limited number of other administrative functions (e.g. indexing). The

binning pages are shown in Figure 6.13 - Figure 6.17.

Using table clinical_core_path_combined

7
Available Columns
Pathology Checklist
E Core Questionnaire

¥| 3.DOB stats categorical P New binning Build inciex

¥ 4. Age stats nurnerical P New binning Build indlex
AQe hinned Dy 20 years Skins Wb edit rebuid clone
AQe binned by decade 10 bins Wi edit rebwild clone

¥ 5 Sex stats categorical P New binning Build index

¥| 6. Ethnicity stats categorical P New binning Build indiex

¥ 6.1. Ethnicity_Other_Descrptn stats categorical P New binning Build inclex

¥| 7. Marital_Status stats categorical P New binning Build indlex

¥ §. Education stats categorical P New binning Build index

¥| 9. Occupation stats categorical P New binning Build fndex
Dccupation binning Shins Wb edit rebuid clone

¥ 10.1. Nurn_Brothers_In_Family stats numerical P New hinning Build inclex

¥ 10.2. Nurm_Half_Brothers_In_Family stats numerical P New hinning Build indlex

¥ 10.3. Num_Sons_In_Farmily stats nurnerical P New binning Build index

¥ 10.4. Num_Sisters_In_Family stats nurmerical P New binning Build index

¥ 10.5. Num_Half_Sisters_In_Family stats numerical P New hinning Build index

¥ 10.6. Num_Daughters_In_Family stats nurmerical P New binning Build index

Cancer_Relative_History

¥ 12, Murn_Prim_Relative_Breast_Cancer_Female stats nurerical P New binning Build index

¥ 13. Murn_Prim_Relative_Breast_Cancer_Male stats nurerical P New binning Build index

Figure 6.13: The binning interface begins by showing the list of columns in a

chosen table. Each column can be expanded to show its corresponding binnings,

ifany, and the binnings can be created or managed from here.

binning - Microsoft Internet Explorer

Edit Binning

Basic Binning Properties

Binning Label [£ge binned by decade On Column: 4. Age
numerical, Min: 18 Max 97 ; Avg: 5143,
Column Yalues

Alto-generate I
bins?

o Algorithm: >Equally spaced bing = l

Mumber of bins:[s
O Copy existing binning:

@ You may optionally auto-generste some hins before editing the bins manually In the next step.

Finish | .

Figure 6.14: The wizard for creating or editing binnings. These can be initially

created using an algorithm or by copying an existing binning.

161

Translational Medicine Portal

rosoft Internet Explorer I (=] 3
Edit Binning Rules Histogram 1=
Define rules for bins
Age binned by decade On Celumn: 4. Age
nurmerical, Min: 18 ; Max 97 ; Avy: 51.43, Column Yalues
Bin hame Cutoff

fioas [

feoes [

fsoss [

faras o

[foss o

[eoes o

fors o

oes | oo

posg 100

»99 default

Add Bin |

@ Cutort
@ Default
& Wil

Finish New| .

Figure 6.15: Interface for manual customisation of bins, for a numerical column.

g - Microsoft Internet Explorer — o] x|
Rules Histogram =
Define rules for bins
Occupation binning On Column: 8. Occupation
categorical, Number of distinct values: 1068, Column Yalues
Bin name Matches Available Values
Fetired Retired ~| |-Default [any unmatched]--
~Mull [value not set)-
retired (Retired] Nurse Assistant
Tst Sgt. LS Army
Retired Nurse eoF D Y
Retired Military = ig i:\rﬁ
= e D Chief Master Sgt. [E-3) &ir Forc
A AD-AE Medical Administration
F Navy Academy
Housewife RN | |AF Officer [RN)
AF Officer-Personnel
Housewife &F Physician [06)
Account Administrator
Housemaker Account Technician
. =] Accountant
(Rinuerecsis HTemakE' | [Accountant/seiEmployed Partin
Add.
Finance Accountant ﬂ
Account Administrator i
Account Technician
Arrannting [=l
4 l‘ L B
Adil_. |Acoounting - Bor Go
Teacher Homemaker =
Teacher Elerentary School
Teacher (High School)
Teacher (working) =
Add
Militany Military =
Military (Air Force)
Military (Army)
4 = | 3

Figure 6.16: Interface for manual customisation of bins, for a categorical

column.

162

Translational Medicine Portal

; Add/Edit binning - Microsoft Internet Explorer ;IQI!I

Histogram =

View Histogram and Finish

Saved and Rebullf binhing "Ade binned by decade’

Age binned by decade On Column: 4. Age
numerical, Min: 18 ; Max 97 ; Avg 51.43, Column Yalues

10-19

20-29

30-39

40-49

50-59

B0-69

J0-79

80-89

90-99

null : . .

0 200 400 B00

Bin MNumber of items Rule
10-19 34 20

20-29 132 30

30-39 315 40

40-49 B16 50

50-59 430 =]

B0-69 332 70

70-79 205 50

80-89 B0 90

50-99 2 100
null 257 null

O 1 5 bin contains no values, it will not be shown in the graph snd table sbove.

Back | Finish | J

Figure 6.17: The binning wizard ends with a visualisation of the bin contents.

The binning web interface was developed as a set of JSPs, as it was meant to be
accessible independently of the Jetspeed portal. These JSPs use AJAX for improved
responsiveness and interactivity (e.g. in retrieving the binnings for a column: these
binnings are fetched using AJAX and inserted directly into the page, rather than
having to reload the entire page and re-render the full column list- or, alternatively,

fetching the binnings for all columns when the page loads).

A simple wrapper portlet was developed which embedded the binning interface into

the portal page using an IFRAME.

163

Translational Medicine Portal

6.4.3 Patient Sets portlet

The Patient Sets portlet is a dedicated JSR-168 portlet (it cannot be accessed outside the
context of the portal), which acts like a "shopping basket" of available patient sets
(Figure 6.18). Any patient sets selected by the user in the OLAP browser will be added
to the list of sets in this portlet. Patient sets can be permanently saved to the database,
or simply used in the current portal session. The core of a patient set is the database
query which can be used to retrieve the set; each set also has an associated name and

description.

This portlet has a number of display modes, appropriate for different portal pages
(Figure 6.19). It uses the portlet messaging library to communicate with other portlets:
it can send the selected patient ID to the Patient Viewer portlet, and patient set queries

as input to Discovery Net Service portlets.

164

Translational Medicine Portal

e _isix

Manage Temporary Sets

Permanent ¥ 132, Exercise Length = 30 minutes or more,
AMNDy 131, Exercise Freq = 3 tines a week or more
Mo saved sets found, (clinical core path combined)
Delete
Temporary arne: |Frequent. long exercisel
* 132, Exercise S - — .
Length = 30 Description: |1 32. Exercise Length = 30 minutes

minutes or more, Save | Cancel |
AMD 131. Exercise

Freq = 3 times a

weel or more
Close |

[ranage sets

; Manage 5ets - Microsoft Inte - |EI |£|

Manage Temporary Sets - |

& 132 Exzercise Length = 30 minutes or more,
AND 131, Exercise Freq = 3 times a week or more
(clinical core path combined)

Delete | Sawve Permanently.. |

Close |

Figure 6.18: Patient Sets portlet, allowing sets to be saved, edited and deleted.

a) Patient Sets b) Patient Sets

Permanent Permanent

Frequent, long s Frequent, long

AR EXEFCISE }
Manage sets
= Temporary

s 132. Exercise
Length = 15 min

or less }

Temporary

[l 132, Exercise
Length = 15 min or
less

Patient =~
Patent
Patient
Patent
Patient "%
Patent™®
Patient
Patent
Patient

QOO 000000

Figure 6.19: Patient Sets portlet.
a) allowing sets to be expanded to show patients within them. An individual
patient ID can be selected for use in another portlet.

b) allowing selection of sets for use in other portlets.

165

Translational Medicine Portal

6.4.4 Patient Viewer portlet

The Patient Viewer portlet displays fully detailed information for a selected patient. At
the moment, this display is quite raw (Figure 6.20), simply displaying the attributes as
a table of key-value pairs. Further development work will focus on an interface to

explore and present this data.

Selected patient: { Select another?)
Patient Activities: Activity Details: SPathologyChecklist (3557)
hide list] - a
* sCoreQuestionnaire ADH invalving papilloma (atypical papilloma) a
2005-06-07 12:52:35.0 Apocrine u}
{387 Biopsy Performed o
* ScCoreQuestionnhaire Classic type (type A) 0
2002-07-09 00:00:00.0 Columnar cell o]
1421y Comedo 0
= SPathologyChecklist Cribriform]
{3557} DCIs 0
* sample {18957) Data not available o]
+ Sample (18958) Date of Biopsy -
Dermal lymphatics o]
* Sample (18959) Distinct cell borders 1
* Sample (22878) Eea o
= Sample {22879} High (grade 3) 0
* Sample {22880} Intermediate (grade 2) 0

Figure 6.20: The Patient Viewer portlet displays the clinical data for a specified
patient. It may be configured to receive patient ID messages from a Patient Sets
Portlet, and also allows users to select patients by specifying the patient's ID

directly.

6.4.5 Discovery Net Services

The Discovery Net Service portlet was easily included on portal pages and connected
with the Patient Sets portlet using the messaging library (Figure 6.25). This uses the
mechanism for reading in messages as service input parameters described in Chapter

3.

At this time, real analysis workflows are still under development by researchers at
Windber, but the concept is proven, and services should be made available in later

releases of the portal.

166

Translational Medicine Portal

6.5 The Translational Medicine Portal

The final portal contains several pages, shown in this section. The OLAP browser
currently provides the bulk of the functionality, allowing users to explore data and
construct tables of interesting attributes (Figure 6.21). The data may be exported to
Excel for further manipulation. Advanced users can create and modify binnings to
customise the data (Figure 6.22). Interesting sets of patients which match the selected

attributes can be saved for use elsewhere in the portal.

The Patient Viewer page displays detailed information on a selected patient — either

chosen from within a patient set, or looked up by patient ID (Figure 6.23, Figure 6.24).

Finally, researchers can also use deployed workflows (Discovery Net services) in the

portal, optionally using patient sets as inputs (Figure 6.25).

A windber Portal - Microsoft Internet Explorer i [=] 5'
File Edit Vew Favorites Tools Help ﬁ

= Back + = - @ at | @Search (] Favorites @Media @ | %v = = - @ - ;1

Address I@ http: fflocalhost: 5090/ jetspeed)portalimedia-type fhtml/role fuserfpagefwindber_select_patients. psmlfjs_pane/P-10713c4c56F-10045 j @Gn
e 2
e s : wel o |
Windber Research Institute PORTAL eleo R o]
 5ye e -
Wl COme | Select Patients | ew Patient Data
Clinical Wiewer | Data Preparation
Patient Sets Presentation: exercise on table clinical_core_path_combined
Permanent D E‘m (==} & '? @ (7]
s Frequent, long Hierarchy [Edit rows] [Edit Columns]

exercise

& Manage sets ’ 132, Exercize_Length »131 Exercize_Freg

esults [Count]

Temporary
s 132, Exercise - -
Length = 15 min or g - = A —
less o % 'g [._.
[z} @ = - o
[Manage sets = = = e = o
= = u
= B[E - 2
s m =1 & = o
t m] 5 i n =
I B = g 3 =
Category = = 25 = & =
[E] 132. Exercise_Length FEEL 2383 2692 150 70 242 293 388 33 1207
13 min or less <] 39 2863 3 8 3 7 A 1] 17
15 to 20 minutes x| o4 25810 B 3 7 9 7 0 20
20 to 30 minutes * 192 2735 15 8 15 30 38 6 a0
[=] 30 minutes ar maore * B34 2608 48 29 73 101 106 11 266 T
131. Exercise_Freq |l (for 132, Exercise_Length="30 minutes or more’)
1 time per week or less] 66 2708 9 4 [i] 4] 10 2 29
1to 3 times a week ® 127 2738 8 6 16 19 29 2 47 b
Jtimes a week or more * 440 2588 H 158 a1 76 67 7 190 =] =
|@j Done l_l_’_ E Local intranet A

Figure 6.21: The OLAP browser page. Selections from the OLAP browser are
stored in the Patient Sets portlet.

167

Translational Medicine Portal

/3 windber Portal - Microsoft Internet Explorer _ IDIEI

File Edit ‘iew Favorites Tools Help ﬁ

Back - = - o | Qisearch [GeFavorites SMedia ¢4 | B-S -9 w8

Address I@ http: fflocalhost ;8090 jetspeedfportalimedia-type fhtmlfrole fuser fjpagewindber _select _patients.psmlfjs_pane/P-10713c4d722-10046 j @Go
g To= =
Windber Research Institute b - PORES L) welcome demo [Logout]
o '} - - 1
Welcome | selectPatients | wviewPatient Data
| Clinical Viewer | Data Preparation

Using table clinical_core_path_combined

7
Available Columns
Pathology Checklist
=l Core Questionnaire

¥/ 3. DOB stats categorical P New binning Build index

¥ 4. Age stats numerical P New binning Build index
Age binned by 20 vears Shing Wl edit rebuild clone
Age binned by decade 0hins o edit rebuild clone

¥ 5. 5ex stats categorical P Mew hinning Bl inclex

¥| 6. Ethnicity stats categorical P Mew hinning Euiled inclex

¥ 6.1. Ethnicity_Other_Descrptn stats categorical P Mew hinning Builel inclex

¥ 7. Marital_Status stats categorical P New binning Builed inclex

¥ 8. Education stats categorical P New binning Builel inclex

¥ 9. Occupation stats categorical P Mew binning Builed inclex
Ccoupation hinning Shins W edit rebuld clone

¥ 10.1. Num_Brothers_In_Family stats numerical P New binning Bl inclex

¥ 10.2. Num_Half_Brothers_In_Family stals numerical P New hinning Eiwnilcd index

¥ 10.3. Num_Sons_In_Family stats numerical P New binning Bl inclex

¥ 10.4. Num_Sisters_In_Family stats numerical P New binning Bl inclex

¥ 10.5. Num_Half_Sisters_In_Family stats numerical P New hinning Bl inclex

¥ 10.6. Num_Daughters_In_Family stats nurerical P New binning Euiled inclex =

Cancer_Relative_Histary

¥ 12 Mum_Prim_Relative_Breast_Cancer_Female stats numerical P New hinning Bl inclex

¥ 13, Mum_Prim_Relative_Breast_Cancer_Male stats numerical P New binning Bl inclex =l =l

@ [B

Figure 6.22: The Binning page.

168

Translational Medicine Portal

/3 windber Portal - Microsoft Internet Explorer _ IDIEI

File Edit Wiew Favorites Tools Help ﬁ

daBack » = - @) i | Qhsearch [GeFavorites Media ¢4 | BEy-S -9 w 8

Address I@ http: filocalhost: 5090/ jetspeedfportal/media-type/htmlfrole/user /pagewindber _view_patient. psml j @GU
g Cor— : =
Windber Research Institute . P PORTAL .
Wyelcome | Select Patients | view Patient Data
Search by CBCPNUM | Wigw Patient Sets

CBCPMUM I Display Patient |

Figure 6.23: A Patient Viewer page, allowing users to specity a patient ID to

view.

3 windber Portal - Microsoft Internet Explorer _ IDIEI
File Edit Wiew Favorites Tools Help ﬁ

P Back - = - @ i | @Search (G Favarites @Media @ | %v = N [@ - ﬂ

Address I@ http:,l’,l’lucalhust:8090,!’jetspeed,l’purtal,l’_ns,l’_ns:‘f'TYanijkaMA_,l’media-type,l’htmI,l’rule,l’user;’page,l’windber_viewgatient.psml,l’jsjane,l’P-lD?lScé?ﬁF?-lDlj @Go

p—— £

. -
Windber Research Institute . PORTAL .
R ——
Welcome | seectpatients | viewPatient Data
| search by cecPnuM || wiew Patient Sets |
Patient Sets Selected patient: -
Permanent
Frequent, long Patient Activities: Activity Details: SCoreQuestionnaire 2003-08-15
exercise 00:00:00.0(1121)

[hide list]

E Manage sets
. _____________________a |

SCoreQuestionnaire

2003-08-15 10.3. Number of Sans 1
Temporary 00:00:00.0 (1121) 104, Mumber of Sisters 1
H 132, Exsrcise SPathologyChecklist 10.6. MNumber of Daughters 1
ILength = 15 min or (2331) 134.1. Height - ft 5
255 H H
o Patient’ % SPathologyChecklist 134.2. H?'ght - S
o Patient 2005-02-23 136.1. Diabetes 1
O Patient 11:16:51.0 (3701} 136.2. Hypertension 1
g :::::::_: = Sample (31008) 136.3, CAD (Coronary Artery Disease) 0
© Patient e = Sample (31999) E:';‘ gttrhoke g
2 Patient =N er
; * Sample (32000)
© Patient M Sample {32000 136.6. None o
© Patient = Sample (32001) 136.7. Unknawn o
O Patient =
O Pationt W = Sample {32019} 175.1, Surgery u}
< Patient W = Sample {32020} 175.2. Radiation Treatment]
Z :::::: - = Sample (32021) 175.3, Chemotherapy a
O Patient M « Sample (32022) 1;:; :|gh DosnlaTihemotherapy g
o Patient 5. Hormonal Therapy
i - * Sample (32032}
& O Sample (32032 173.6. Immunotherapy o
8 ::‘;::: : * Sample (32033 175.7. Complementary Treatment(s) 1]
0 Patient N = Sample {32034} 175.8. Unknown u]
& Patient = Sample (32035) 178.1. Lung 0 x|
[&] l_l_l_ E Local intranek v

Figure 6.24: A Patient Viewer page. The Patient Sets portlet allows each patient
set to be expanded to show the patients contained within. These patients may

then be selected and shown in the Patient Viewer portlet on the same page.
169

Translational Medicine Portal

/3 windber Portal - Microsoft Internet Explorer

=10l x|

File Edit ‘iew Favorites Tools Help ﬁ

Back - = - o | Qisearch [GeFavorites SMedia ¢4 | B-S -9 w8

Address I@ http: fflocalhost :5090) jetspeadiportal!_nsf_ns: ¥ TryMnxMHxkMHxBNDUZFGEMwEGOw/media-typehtmlfrole fuser fpage fwindber _workflows , psml j @GD
- ' I ;
v — = FUR IA_L ‘Welcome jout]
Windber Research Institute , demo [togout -
Welcome | selectPatients | viewPatient Data Analysis Tools |
(Workflow 1) || (workflow 2) || (warkflaw 3)

Patient Sets Edit Messaging Yiew Project Details

Permanent Service: fdemofWindber/Retrieve OLAP data AddiLoad Bookmark Reset
* Frequent, long
exercise ")
TG OEGER)Query: Using input Patient Set Query (Workfiow?) 'select * from wri_new3.dinical_core_path_cornbined
p ¥ main_table where main_table Exercise_Length="30 minutes or more' and main_table Exercise_Freq="'3 times a week or
® 132, Exercise mare

Length = 15 min ar

less & P Tablel

Retrieve the data for entries matching the specified query

Cutput for action: Table

Table Size: 440 rows
Show sample of: [30 Viewl

Export CEY Qutput TSY AL Cutput ASF Output
Save to Userspace | options: {Excel) Dutput ehRowSet XS0 {Spotfirel
[Mote: To download file, use right-click and select"Save As.."]

CBCPNUM [BREAST (TISSUE_NON_BREAST PATH_CATEGORY (PRO_PRO_1_PRO_COD_1|PRO_PRC
Right Benian P01 2003-10-2
Right Benion PO 2004-06-(
Left Benion P01 2004-05- j
&

rrr
Figure 6.25: A workflow page. The Patient Sets portlet allows each patient set to

be selected, for use as input to the workflow.

170

Translational Medicine Portal

6.6 Conclusion

The concept of an analytical portal was entirely appropriate for the needs of Windber's
researchers, and was so successful that it extended the project well beyond its original

conception, which was 'simply' a rebuild of their existing data warehouse.

The use of the Jetspeed portal with both customised Windber and Discovery Net
portlets supports multiple stages of the analysis procedure. Researchers can go from
initial exploration of warehoused data (Figure 6.21), to selection of interesting subsets
of patients, to analysis of those patient sets to perform new research (Figure 6.25) - all
within the same Portal environment. The Discovery Net Java Client need only be used

for initial creation and editing of the analysis workflows.

The integral portal services for page management and security also proved useful: first
in the rapid development of the custom pages making up the Translational Medicine
portal, and then in restricting access permissions on certain portlets and pages, so that
external research partners could be given access to the OLAP browser, but not to the

confidential individual patient information.

This project also demonstrated the usefulness of the IPC library (Chapter 5), in first
developing the communicating Windber portlets, and then allowing the new Patient
Sets portlet to provide input to Discovery Net Service portlets. The shared message bus
provided by the library allowed the portlets to be easily developed as independent but

interoperating components.

In summary, the portal/IPC approach allowed us to provide:

—_

A user friendly web-based research solution

2. Independent development of portlets customised to the client’s needs

3. Easy integration through IPC with Discovery Net services in the same portal
4. Rapid development of portal pages

However there was one aspect relating to the custom portlet implementation which

was less than ideal: the method of integrating a rich AJAX-based web application

171

Translational Medicine Portal

within a portlet. We approached this by embedding the complex, non-portlet
application within an IFRAME — however this has the effect of framing the application
within a fixed size box on the page, with its own scrollbars. This was not popular with
the users, but the alternative of developing a rich web application completely within a
JSR-168 portlet was problematic from a development point of view. The limitations of

using AJAX within JSR-168 portlets are discussed in detail in the next chapter.

Work is expected to continue on the Translational Medicine portal for some time, to
customise it with interfaces specific for patient data (e.g. using timelines as a way of
visualising information over a patient's lifetime), and expand the current tools to allow
appropriate treatment of data with a time component. The current generic OLAP
browsing technology will also be examined for use by other customers in other

application areas.

172

Limitations and Improvements for [SR-168 portlet technology

Chapter 7. Limitations and Improvements for
JSR-168 portlet technology

Developing portlets to the JSR-168 portlet standard!'! is a good practice as it widens
the choice of portals to which they can be deployed, avoiding vendor lock-in. However
there are several limitations involved in developing JSR-168 portlets. Many of these
issues have workarounds (of varying effectiveness). We discuss these limitations and

their workarounds in detail in this chapter.

The next version of the portlet specification (JSR-286[1%l) is currently in progress. The
new standard will address many of the features lacking from the original specification,

and hopefully also some of the additional limitations described below.

As a result of the research detailed in this chapter, we have summarised the most
important issues and submitted a list of topics and potential improvements for
consideration to the JSR-286 expert group (Section 7.4). The closely related WSRP 2.0
specification is also in development, and any new features will be coordinated between

both specifications, whenever relevant.

In this chapter, references to specific parts of the Portlet Standard JSR-168 and the
Servlet Standard!" will be prefixed by ‘PLT.” and ‘SRV.” respectively.

7.1 Context

When considering the limitations of JSR-168 portlets, we must first explain what we are

comparing it against.

WSRP describes a language-independent method of accessing remote portlets.

However in practice, the vast majority of portlet implementations have been in Java,

173

Limitations and Improvements for [SR-168 portlet technology

using the JSR-168 specification. Two exceptions are “Go-Geo!””® using Perl, and

NetUnity?* using .Net.

In comparison to other, non-JSR-168 portals, the limitations would therefore focus
mainly upon those features left out of JSR-168 and the differences between Java and the
technology (Perl, PHP etc) used by the other portals. There are numerous different web
technologies and frameworks, and a full comparison is well beyond the scope of this
report. The final choice of web technology is often made based upon the developers'
experience and preference for the underlying framework or language used, or
mandated by existing infrastructure, both of which are entirely practical, but not

considerations that can be addressed as part of a Java specification.

We will therefore consider JSR-168 primarily in the context of Java web server
technologies, the core of which is J2EE!'! and Java Servlets!®l but which also includes
non-JSR-168 Java portals. JSR-168 portlets are very similar to servlets, but differ in
numerous ways!'”?l which are described in detail in Section 2.6.1.3. Many of these
differences are what lead to the problems and limitations in the way portlets can be
used - particularly from the point of view of a servlet developer migrating to use

portlets.

7.1.1 Other Java Portals

Non-JSR-168 Java portals based upon J2EE, such as earlier versions of Oracle Portal(®,
IBM WebSphere*], and Apache Jetspeed 1129, are the precursors to JSR-168 Portals and
each provide their own version of "portlets’ and accompanying portal services. These
portals are still in use by many sites, and most now support JSR-168 in their latest

versions, often in parallel with their own legacy portlet systems.

The portal-specific portlets often boast a wider array of features than those provided in
JSR-168 - for example, support for developing MVCE! portlets (often with Apache
Struts), inter-portlet communication, portlet filters (discussed in detail later), and direct
use of portal services such as page layout. Use of these features is often very desirable
to portlet developers, but such portlets can only be hosted in the chosen portal
implementation and are not JSR-168-compliant. Although using portal-specific features

directly will always be more efficient and powerful, it is possible to get some of the
174

Limitations and Improvements for [SR-168 portlet technology

advantages of these advanced features without sacrificing JSR-168-compliance and
being locked down to using a particular portal. Where relevant, these workarounds

will be discussed below.

7.2 Limitations in Portal Design

There are some fundamental practical considerations in the design of portal pages and
portlet contents that are not specific to JSR-168, but apply to any Portal-like system.
Thus at an early stage of development it must be decided whether or not the aims of a

site are best met by the portal philosophy.

First is the concept of modularity in a website, and whether this is suited to the content
of a particular site. Modularity is clearly beneficial from the point of view of code
maintenance; however it may not be optimal for the site designers or end-users, as it
discourages direct cross-linking between modules. Such cross-linking between sections
can add significantly to the usability of the site, and is a convenience expected by end
users. Therefore, despite code modularisation, linking between sections is common and
often must be allowed for, usually by avoiding changes to document locations and
URL query formats whenever possible. This is manageable in sites where modules are
loosely-coupled and do not require extensive cross-linking - such sites will translate
well to a portal, as it should be quite easy to split up the functions into mostly-
independent portlets. On the other hand, if a site is tightly focused, and most of the

pages are closely coupled, it may not be necessary or worth the effort to use a Portal.

The next most significant design consideration in developing a portal site concerns the
core feature of allowing multiple portlets to be present on a single page. This means
firstly that all these portlets must be able to fit in the limited space available, and
secondly, that the page will take longer to generate and display than if it was only
showing one portlet at a time. Every time the user interacts with a portlet on the page
to submit a form or follow a link, the whole page must be re-rendered - this will
probably result in all the render code for all the portlets re-executing, even when the
user has only actually interacted with one of them. The Portal may support caching of
portlet views to improve performance (a portlet's cache 'expiration-time' may be set in
the configuration portlet.xml) but this support is not compulsory.

175

Limitations and Improvements for [SR-168 portlet technology

These issues must be taken into account by both the page designer (when choosing
which and how many portlets to add to a page), and by the portlet developer. The code
which renders the portlet should be idempotent and as lightweight as possible to speed
up page loading, and portlet content must be compact if the portlet is to share space
with other portlets. In addition, portlet and page designers must be particularly careful

to avoid overloading and confusing the user with too much complexity.

7.3 Limitations in Portlet Implementation

Having decided that the generic portal concept fits a website's aims, the choice of
portal technology will be dependent on the capabilities of the portal software and the

developers' skill set.

Here we discuss in detail the considerations and limitations involved in the
development of JSR-168 portlets, many of which will be encountered in the
development of any moderately complex portlets, and particularly when considering
conversions of existing servlet-based sites. Where relevant, we also include
workarounds and our solutions. These may be considered to be in addition to the
excellent "Best Practices" document by Stefan Hepper!'®l which outlines the basic

differences in developing portlets compared to servlets.

7.3.1 Java-only

Although we will not go into a comparison between different languages available for
server-side page generation, it should be noted that the language restriction will
naturally make migrating an existing non-Java website to use JSR-168 portlets

considerably more time-consuming.
Workaround

There are some bridges available, notably Apache Portals Bridges®", which allow an
existing non-Java application to be wrapped as a JSR-168 portlet. This can wrap PHP
and Perl applications and other native programs (e.g. MapServer®). Such bridges are
very valuable for exposing existing and legacy applications, but may not permit full

usage of portlet features (depending on the particular implementation).

176

Limitations and Improvements for [SR-168 portlet technology

Alternatively, for a non-JSR-168 but still standards-compliant approach, the portlets
could be developed using any language and then exposed as WSRP!"* (Web Services
for Remote Portlets) web services. Many portals now support WSRP portlets as well as

or instead of JSR-168.

7.3.2 Missing Portal Features

The JSR-168 specification (Section PLT.E) notes some features as missing, and to be

considered in a later specification:

» Portlet filters
 Inter-portlet, event style, communication
« Allow portlets to produce and influence markup outside of the portlet fragment

These features and others are discussed in this section.

7.3.2.1 Portlet Filters

The Servlet API®I includes support for Filters (Section SRV.6), which wrap the
processing of an incoming request. A filter can inspect the request and modify the
response returned to the client, and can therefore be used for a multitude of tasks from

access-checking to transformation of the response content.

Filters are configured in the webapp's web.xml configuration file, and can be mapped
to individual servlets or particular URL patterns covering many servlets and/or other
files. It is then the servlet container's responsibility to apply the filters to any incoming
request. Multiple filters can be applied to a single request - for example, a request
might first be passed through a filter which replaces special markup in the response
with HTML, and then a second filter which compresses the response before

transmission.

Counterintuitively, servlet filters registered in a portlet application's web.xml (see
Figure 2.8 for example directory structure) are not applied to portlets in that
application when they are rendered by a portal. Filters are only applied to resources
served by the servlet container to the client browser from the same webapp (e.g.
http://myserver.com/myportletapp/page.jsp would be seen by the servlet

container to be in the myportletapp webapp); this never happens with portlets.

177

Limitations and Improvements for [SR-168 portlet technology

Instead, the client requests pages from the portal’s webapp, and the portal invisibly
delegates to portlet classes when it needs them to render part of a page (e.g.
http://myserver.com/portal/index.jsp?pageid=3 might be the form of the URL
visited by the browser, and served by the servlet container from the portal webapp).
Thus only filters defined in the portal's webapp would be applied to the portlets in a
portal page.

JSR-168 mentions portlet filters as a feature which will be defined in the next
specification. The functionality provided by filters can currently be duplicated by other
methods, such as having portlets inherit from a parent class with the required common

features, or the workarounds below.
Workaround

The Apache Portals Bridges project includes a generic, JSR-168-compliant, Filter
Portlet, which can provide similar functionality to servlet filters. The Filter portlet acts
as a wrapper around the real portlet. This is done by registering the Filter portlet in the

portletxml , and parameterising it with the name of the 'real’ portlet class.

Another option is to use aspect-oriented programming'*! to intercept portlet methods
and wrap them, which would be very similar to filters but differ in the method of

configuration.

Portlet applications using either approach should be relatively easy to modify to
support real portlet filters when it is time to upgrade to the next standard, as both

approaches keep the filter code completely separate from the portlet code.

7.3.2.2 Inter—portlet Communication (IPC)

JSR-168 leaves the method of communication between portlets to be defined in the next
specification, so there is currently no official API through which portlets can exchange
messages. Communication is still possible, by using shared session attributes visible to
all portlets in the same application, or by using external message stores such as
databases. However the detailed implementation of such communication is left up to

the portlet developer!'38.

178

Limitations and Improvements for [SR-168 portlet technology

Conversely, many Portals make their own detailed provisions for IPC, using a variety
of models and configuration methods (see Section 5.1 for examples), and have done so
since before JSR-168 was published. The use of such communication services saves

considerable development time, but the portlets developed are then portal-specific.

Workaround

As a stopgap measure before the next portlet specification is finalised and
implemented by portals, we have implemented a library for portlet messaging which
works within the limitations of JSR-168. This enables developers to write
communicating portlets easily without needing to implement the messaging system as
well, thus partially levelling the field between JSR-168 and portal-specific messaging.
Of course, an arbitrary third-party portlet will still not be able to participate in such
communication without being rewritten to use this messaging library - but that level of

compatibility must wait for an official IPC API in the next specification.

A more detailed description of existing portlet communication systems and the design

of the messaging library is given in Chapter 5.

7.3.2.3 Access to Portal Services

Services such as management of pages, portlets, users, roles and access permissions are
provided by the Portal hosting the portlets. With JSR-168, there is no way for a portlet
to access these services: it cannot inspect its page environment or other portlets, and
security is limited to the PortletRequest functions getUserPrincipal/

getRemoteUser and isUserinRole
As a result there are a number of things a JSR-168 portlet is unable to do, including:

» Modify page layouts, e.g. add a new portlet to a page

* Add or remove portal pages

» Manage users and roles

« Set page or portlet access permissions

« Find out what other pages there are on the portal, and link to them

« Find out what other portlets exist on a page, or on the whole site.

179

Limitations and Improvements for [SR-168 portlet technology

One example where such services would be useful is to allow portlets to generate links
to other pages or portlets. If the portlet were able to retrieve a list of available portal
pages at runtime, it would be able to present a richer configuration interface to the
user. For example, one portlet might redirect to another portal page as part of a longer
process involving many portlets, and the administrator or even the users might be

allowed to specify which page should be next in sequence.

Portlets might also be able to use information about what other specific portlets were
present on portal pages. For example, a portlet might print links to related portlets, if it
detected their presence. Or a company might distribute a collection of portlets, but be
unable to guarantee which exact portlets were present in any given installation: e.g. a
particular forum database might need to be set up, or a particular server-side

visualisation or analysis package installed and paid for.

Management and inspection of pages, portlets and users/roles programmatically in
portlet code can currently only be done using portal-specific extensions; normally, it is
done using the portal's own management tools. While many of these functions would
be very useful in some scenarios, a question would remain over how much power a
portlet should be given to actually modify its own hosting environment (read-only
inspection would be less of a risk, but still perhaps a security concern). Even if access to
such functions were to be provided in a later portlet specification, it would be likely
that final control would remain with the portal administrator, who would be able to
configure the permissions granted to portlets. In addition, different portals currently
use different models for managing pages and users; it may not be appropriate or
desirable for the portlet specification to specify in detail the approach taken by portals
in implementing these services, but this might become necessary if a standardised way

for portlets to access the services were provided.

7.3.2.4 Window ID

The portlet window is a particular instance of a portlet on a portal page (Figure 2.5).
There is some variance in the exact interpretation (discussed later in this chapter), but
generally the portlet window is considered as an independent module that maintains

its own state separately from all the other portlet windows in the site.

180

Limitations and Improvements for [SR-168 portlet technology

Knowing the portlet window ID is critical when developing JSR-168 portlets as
communicating components. This is particularly relevant when there are multiple
portlet windows based upon the same portlet entity (e.g. multiple Weather portlets,
each set for a different city). Preferably, this ID would stay the same across browser
sessions. The Portal itself will already have assigned an internal ID for each portlet
window, so that it can store and retrieve portlet window preferences etc., but JSR-168
provides no simple way to access this ID from within the portlet code. In some
situations, the method RenderResponse.getNamespace() may be a suitable
alternative, but this only provides a namespace for the portlet window which is unique
within the current page (PLT.12.3.4); it is not guaranteed to be unique across the whole

portal, or even to be consistent across different requests in the same session.

Window IDs can also be used to permit easier use of external data stores - e.g. data that
is too large to go in the portlet session/preferences, or too complex to store as a String
in a preference. Another example is in a "Message of the Day" or generic "Content"
portlet, which ideally could be edited by users with administrative privileges, but
whose content would be visible to all users. For example there might be a Content
portlet on every page of a fixed portal layout, which only admins could edit. In this
particular use case, the content cannot be stored in JSR-168 preferences, as such
preferences are user-specific and so only the admin entering the content would see the
changes. Thus, to implement this "shared preferences" behaviour, the content must be
stored in an external data store. With an arbitrary number of Content portlets (e.g.
being added to new portal pages), the Window ID (common for all users) is an ideal
key to use to store the content in the external data store. An alternative, not using
Window IDs, would be to add separate portlet entities in portlet.xml for each
Content portlet, including an initialisation parameter in each entry which is the key for
the content in the remote store. However this is a far more cumbersome approach as it

requires changes on the server for every new Content portlet added to a page.

A further use of a Window ID is in namespacing cookies, so that cookies stored (by
JavaScript) by one portlet window do not interfere with other windows showing the
same portlet entity on other pages. This is particularly important when AJAX? is

being used to create a user interface whose client-side state must be persisted in a

181

Limitations and Improvements for [SR-168 portlet technology

cookie. RenderResponse.getNamespace() may be usable here instead, but there is no

guarantee that it will provide a namespace unique across the whole portal.

Workaround

It is possible to generate an arbitrary unique ID for a portlet window, and store it in its
local session when the window is first rendered; this is quite easy to implement
(Appendix Al). A per-session ID can be guaranteed to be unique for the portlet
application by registering and checking it against a list of assigned IDs in the
APPLICATION_SCOPE session. If the ID must persist across multiple sessions, it can
instead be generated once and stored in the user's preferences for that portlet window -
however, this approach opens up the possibility of ID clashes with portlets which have
not yet been initialised in that session, and so an official method of retrieving the ID

would be preferable.

Another, more reliable, workaround makes use of the portlet window ID which is used
by the portal to namespace PORTLET_SCOPE session attributes, as described in
PLT.15.3. Assuming that the portlet is able to inspect the APPLICATION_SCOPE
session and access the full name of namespaced session attributes (encoded as
"javax.portlet.p.<ID>?<ATTRIBUTE_NAME>"), it would be able to retrieve the portal's
unique ID for the portlet window by deconstructing that full attribute name. Example

code for doing this is provided in Appendix Al.

7.3.2.5 Session ID

When a user visits a portal with a web browser, it is common for the server to start up
a server-side ‘session’ for that user. With its page response, the server sends back a
unique session ID to the browser, which the browser will then include with all
subsequent requests. The server can thus use session state to persist information across
requests. When the browser is closed, the session is effectively lost as the user will have
no way of re-initialising the browser with the same session ID, and eventually the

session state on the server will expire and be cleaned up from memory.

Following the servlet specification, each web application has its own separately

maintained session. This is done to keep web applications from accessing or

182

Limitations and Improvements for [SR-168 portlet technology

overwriting other applications' private session data. As discussed and illustrated in
Figure 2.7, the portal and each portlet application are all web applications, and each
portlet application has its own session (even if in practice the portlet sessions are

‘virtual’, within the portal session).

A portlet can retrieve the unique ID of its portlet application session with
PortletSession.getld() . It is entirely possible that portlets in different portlet
applications will see different portlet session IDs. The portal will also have its own

session ID. This section is concerned with the retrieval of this ID by portlet code.

There are several use cases where a portlet may need to know the portal's session ID -
these are typically when related portlets are deployed in different portlet applications

(e.g. due to a modular distribution/licensing scheme).

Firstly, when portlets in different applications need to communicate, they need to find
an ID to represent the current user session which they are all part of. The ideal
identifier is simply the portal's own session ID. This ID can then be used to store and

retrieve messages in an external message store accessible by all portlets.

Secondly, the session ID would also allow back-end resources (used by portlets in
different applications) to track proper user sessions, so they could enforce licensing

limits, enable clustering, or simply perform logging.

Workaround

The JSR-168 method PortletRequest.getRequestedSessionid() can very nearly
provide the needed functionality, as it returns the session ID included in the client
(browser) request, which corresponds to the Portal session. However, unlike
HttpSession.getld() or PortletSession.getld() , this approach does not work
with newly-created sessions - i.e. the very first page rendered by the server, before the
client has been informed of the session ID. This can be inconvenient if as part of session
creation the portlet needs to set up external resources reliant on the portal session ID
(such as external message stores). Thus to avoid this problem, any portlets relying on

this method should not be placed on the first portal page.

183

Limitations and Improvements for [SR-168 portlet technology

Apart from using PortletRequest.getRequestedSessionld() , two approaches have
been investigated: setting an arbitrary session ID in a cookie visible to all portlets
(which also has the first-page problem, and is quite unreliable), or modifying open
source portals to pass on the Portal's session ID in the PortletRequest. Neither of these
are ideal: the cookie approach is more fragile and thus inferior to using
getRequestedSessionld() , and although the portal-modification gives a better end
result, it requires access to portal code and also restricts the portlets to using that
specific modified portal. We believe that PortletRequest.

getRequestedSessionld() is currently the best approach, but the problem of its

behaviour with new sessions is important enough to be highlighted.

7.3.2.6 Cookies

Cookies are small pieces of information stored on the client machine by a web browser
as name-value pairs, used for client-side tracking of state. They can be set either by a
response header from the server, or using JavaScript. When making a request to a web

server, the browser includes any cookies set by that site as a header in its request.

Cookies are used for storing state information relevant to the browser session. They are
particularly useful if AJAXP?" is used to modify the client-side state of a portlet. AJAX
applications work by using JavaScript to send off browser requests invisibly in the
background, to submit and/or retrieve data from web pages. Portals provide no AJAX-
addressable endpoints to allow direct interaction with portlet windows, and so there is
no convenient way for a JavaScript request to update or read the portlet state (e.g. read
from or save information to a portlet window's local session). Thus portlets using
AJAX may have to store state information in client-side cookies, instead of the server-

side portlet session.

Cookies can also be used to communicate information (e.g. login information, IDs of
working data sets) between portlets and other, non-portal, web applications on the
same server - which themselves might use any technology (J2EE, PHP etc). An external
data store, accessible to both applications, could alternatively be used to store this
information - however cookies are simpler to implement, for small amounts of data,

and do not require maintenance.

184

Limitations and Improvements for [SR-168 portlet technology

Reading Cookies

Servlets can access client cookies using the method HttpServietRequest.

getCookies() . There is no direct equivalent for this in the PortletRequest , however
on some Portals the value of the cookie Header can be accessed using
PortletRequest.getProperty('cookie") . This approach is not guaranteed to work
reliably on all portals. According to PLT.11.1.4, this is due to differences in portals and
servlet containers which may make the headers unavailable to portlets. JSR-168 does
support some headers (such as Content-Length and Content-Type) with specific
access methods in the PortletRequest interface, but unfortunately this was not done

for cookies.

Hopefully the retrieval of cookies will be addressed in a later specification.

Workaround

Some portals will allow the cookie to be retrieved using PortletRequest.

getProperty("cookie") , but this cannot be relied upon.

Setting Cookies

Servlets can set cookies by including a special header in the response. This is done on
the HttpServletResponse using either addCookie or setHeader . Neither is available

to portlets on the PortletResponse or its subclasses.

A portlet cannot be expected to be able to set response headers during the render
phase, as it can only affect its rendered page fragment (and the beginning of the page
response, where the headers are included, may already have been sent to the client by
the time the portlet render code executes). However, it should be theoretically possible
for a portlet to set a cookie on an ActionResponse in the action phase (which occurs
before any rendering takes place), as it is already possible to send a ‘redirect’ response

with a Location header during this phase, using ActionResponse.sendRedirect()

Hopefully a later specification will permit cookies to be set on an ActionResponse

185

Limitations and Improvements for [SR-168 portlet technology

Workaround

Without support in JSR-168 for setting cookies as part of the response, it is necessary to
resort to approaches which are more clumsy and fragile. One option is to set a cookie
using JavaScript, which can be done by having the portlet generate the JavaScript as
part of its rendered display - however this relies on JavaScript being enabled on the
client. Another option is to add a servlet to the portlet application which sets a cookie
when it is accessed. This servlet must be accessed through a direct URL by the client,
not dispatched to or included by the portal, and so it must be loaded through an
IFRAME or a popup window generated as part of the portlet display. Both approaches
(JavaScript & servlet) have the disadvantage that the cookie is set only as a result of the
client viewing an already-rendered portal page. It is also possible that the cookie will
never be set, if the user cancels the page or visits another before the relevant portlet

finishes displaying (e.g. on a long or slow-loading portal page).

7.3.2.7 'Exclusive' display mode

Portlets generate only a fragment of the eventual response sent to the client. Therefore,
if a portlet needs to serve binary content (images, PDFs etc) to a client, it cannot
directly include these into the HTML stream. Although some browsers permit binary

objects to be embedded in HTML, support for this is not yet widespread.

To provide a file for download, a portlet must cause the client to make a new request -
either directly to the file, or to a servlet which retrieves it. This is done by either
rendering a link to it, including it in an IFRAME, or opening it in a new window.
However, problems related to the treatment of cross-context sessions may be
encountered when implementing these approaches on some Portals (discussed below).
This means that any portlet state which is relevant to the servlet (e.g. current user, file
to show, data to be rendered as a chart) needs to be explicitly passed to it, either
through query parameters (in the servlet URL), cookies, or through an external data
store. The latter involves extra complexity, and the first two methods send all the data
to the client browser, then back again to the servlet. Apart from the inefficiency and

extra coding required, if there is a large amount of data to be sent - e.g. to a servlet that

186

Limitations and Improvements for [SR-168 portlet technology

generates a chart or other visualisation based on the data - this probably won't even be

practical.

As an alternative, some Portals (e.g. uPortal®l) have chosen to make available an
‘Exclusive’ mode in which a portlet generates the entire response, not just a fragment.
This makes any problems with cross-context sessions irrelevant. This approach is
portal-specific but quite popular, and may also have relevance when considering the

use of AJAX in portlets (discussed below).

7.3.2.8 Remote (client) IP

Servlets can find out the IP address of the client which sent the request, through
ServletRequest.getRemoteAddr() or getRemoteHost() . This can be useful for
limiting access by IP address or logging IPs associated with actions for administrative

or security purposes.

However, portlets are currently insulated from finding out information about their
actual end user - perhaps to emphasise and simplify the portal's role as intermediary.
The PortletRequest classes do not provide an equivalent of these methods, and it is
therefore not possible for a portlet to directly retrieve the client's IP address from the
request as a servlet can. Nor can this be worked around by causing the portlet to
dispatch internally to a servlet, using a PortletRequestDispatcher - JSR-168
specifically prohibits the ServletRequest = methods concerned from working in this

context (PLT.16.3.3).
Workaround

We have not found a good workaround for this issue. One possibility is to use a
combination of servlets and cookies as described earlier, which would require support
for reading cookies in portlets, an additional servlet in the portlet application (which
retrieves the IP address and saves it in a cookie), and at least one page render before

the portlets would have access to the client IP address.

187

Limitations and Improvements for [SR-168 portlet technology

7.3.3 Further Issues

When developing portlets, there are also a number of areas of possible confusion
(rather than missing features), often due to differences between portal

implementations.

7.3.3.1 Portlet Windows /Instances

Portlets are defined with entries in the portlet.xml deployment descriptor. PLT.5.1
specifies that only one actual instance of each portlet so defined will be created by the
portlet container (or one per VM in the case of a distributed application). This single

instance will be used to process any Action or Render requests targeted to that portlet.

However, the same portlet - with only one definition in the portlet.xml - can be
placed in more than one position on a site, and often it is necessary for these different
portlet windows to operate independently. For example, a 'Stocks' portlet might be
configured by the user to show a report for different stocks on different pages; a portlet
which could be pointed at any WSDL file to generate an interface to a web service
might also be present on different pages, providing access to different web services; a
content management portlet would need to display different content on different
pages. Conversely, a “shopping basket” portlet which appears on many pages should

always act as the same portlet.

JSR-168 defines a portlet window as the combination of a portlet and its preferences on a
portal page. It also states, "A portal page may contain more than one portlet window
that references the same portlet and preferences-object." (PLT.5.2.3). The details of
creating and managing portlet windows are left to the portal server and portlet

container.

This leaves several aspects of the concept of a 'portlet window' undefined or

ambiguous, including:

188

Limitations and Improvements for [SR-168 portlet technology

1) Do different portlet windows also maintain their own, separate,
PORTLET_SCOPE sessions and render states (from Action requests) as well as
preferences?

2) Can there be different portlet windows of the same portlet which are associated
with different preferences and session objects?

a. on the same page?

b. on different pages?

The answer to the first question is usually assumed to be 'yes', but the second is more
variable. Different portlet containers and portals are implemented using different

assumptions.

The strictest approach, taken by Pluto® and GridSpherel”, is to assume a simple
mapping of portlet definition (in the portlet.xml) to portlet window: adding a second
portlet window for the same portlet will merely result in a mirroring of content from
the first. In this case, if multiple independent portlet windows are required, the portal
administrator must add multiple definitions in the portlet.xml for the 'same’ portlet

(merely differing in portlet name).

Perhaps the most intuitive approach is to treat every portlet window on a page as an
independent entity, with its own set of preferences, PORTLET_SCOPE session, and
render state. This allows for an unlimited number of portlet windows associated with a
single portlet definition, and is particularly well-suited to sites which give users the
freedom to add portlets to their pages. This is the approach taken by Apache Jetspeed

and Oracle Portal.

Intermediate approaches are also possible. For example, a portal might allow portlet
windows from the same portlet definition to exist independently on different pages,

but not on the same page (we encountered this behaviour in Liferay!>?).

JBoss Portal!l adds an additional level of abstraction between the portlet definitions
and the portlet windows: it allows a "portlet instance" to be dynamically created at
runtime, based upon a portlet definition'®. Each JBoss portlet instance has a

modifiable set of associated preferences, and may be used as the base for one or more

189

Limitations and Improvements for [SR-168 portlet technology

portlet windows. This approach is the most flexible, allowing both independent and
linked portlet windows based on the same portlet definition. To create multiple
independent portlet windows, each window must be based on a new portlet instance
of a single portlet definition. To create identical/linked portlet windows on different
pages - for example, a chat portlet that should retain user settings and state across
pages - a single portlet instance can be used as the common base. The disadvantage of
this approach is the increased complexity in adding new portlet windows to pages,

which must now include steps for portlet instance creation and association.

Differences in portal behaviour on this subject do not significantly affect the process of
developing portlets. They do affect the way the portlet deployment descriptor is
written (if extra entries are necessary to produce independent portlet windows), and
the way site designers and users add portlets to pages. For dynamic sites which allow
users to create pages, the strict interpretation may not be sufficiently flexible,

depending on the expected level of portlet reuse.

7.3.3.2 The Port| et Sessi on and the Ht t pSessi on: Cross-context handling

As discussed in Section 2.6.1.3, a portlet application is a web application which
additionally contains portlet classes and a portlet deployment descriptor file listing the
portlets. It may also contain anything else that can be in a normal web application,
including arbitrary files, JSPs and servlets. These can be accessed and served as normal

by the servlet container.

According to JSR-168 (PLT.15.4):

"The PortletSession must store all attributes in the HttpSession of the
portlet application. A direct consequence of this is that data stored in the
HttpSession by servlets or JSPs is accessible to portlets through the
PortletSession in the portlet application scope. Conversely, data stored by
portlets in the PortletSession in the portlet application scope is accessible to
servlets and JSPs through the HttpSession ."

This behaviour is also described in PLT.3.1: "Bridging from Portlets to Servlets/JSPs".

This is clearly intended to allow portlets and servlets in the same portlet application to

easily work together, communicating through the shared session. The session may be

190

Limitations and Improvements for [SR-168 portlet technology

used to send data (for example if the portlet wishes to delegate to a servlet to generate
a binary file based on that data, such as a graph image or a PDF), or details of the

logged-in user (which the servlet may use for authorisation).

However, there are implementation issues which mean that this behaviour is not found
in some servlet container/portal setups (notably the Apache Tomcatl® servlet
container). The following description is based upon our experiences and that of many

others(136148,178]

As we have mentioned earlier, the Servlet 2.3 specification requires that the server
maintains a separate session for each webapp (SRV.7.3). As the portal and the portlet
applications are all web applications, they should each have their own session. This is
compatible with the JSR-168 description: the servlets within a portlet application could

be reasonably expected to share the same session with portlets in that application.

However, the way that a portal serves pages to the client browser makes the matter
more complex. When visiting a portal page, the browser will typically access an URL
along the lines of http://server.com/portal/display?pageid=3 . The resulting
page may include portlets from any portlet application on that server, but there is no
indication of the source portlet application in the URL. As we discussed earlier
(7.3.2.1), to the servlet container, the request is only to the portal web application, and
the corresponding session is the portal application's session. Thus, many portal
implementations actually store both PORTLET_SCOPE and APPLICATION_SCOPE
portlet sessions within the portal's own session, not in the session of the parent portlet

application (illustrated in Figure 2.7).

Consequently, when a servlet or any other portlet application resource is accessed
directly by the browser, with the form http:/server.com/myportletapp/

getfile.jsp (e.g. in an IFRAME or popup window), and the servlet container uses the
session belonging to the specified portlet application, this session does not contain any
of the APPLICATION_SCOPE or PORTLET_SCOPE session for that application's
portlets. In this case, the only way the portlet can send information to the servlet is by

appending URL query parameters (e.g. http:/server.com/myportletapp/

191

Limitations and Improvements for [SR-168 portlet technology

getfile.jsp?name=report.doc), which due to limited URL length may not be

appropriate or possible for large amounts of data.

If on the other hand the servlet is included as part of a portlet's output through the

portal, using JSR-168 mechanisms (in ~a portlet render method,
getPortletContext().getRequestDispatcher(jspPath).i nclude(request,

response) , or in a JSP included by the portlet, <jsp:include>), the session behaviour
is correct as described in JSR-168. However this approach is not suitable for many
common use cases for servlets, as it excludes the use of pop-up windows, IFRAMEs,

and the provision of binary files to the end user.

From testing with Jetspeed/Pluto on Tomcat 5.0 and the default configuration of 5.5,
servlets accessed directly do not share the portlet session. In Tomcat 5.5 configured
with emptySessionPath="true" , behaviour is correct as described in the portlet

specification.

The new getResource function provided in the draft WSRP 2.0 specification!!¥ gives
one insight into how this confusion might be resolved in the future. getResource

allows the portlet consumer (the portal) to retrieve a resource such as a JSP within a
portlet application, while providing the portlet context to that resource. This would
explicitly make the portlet session and other parameter settings available to resources

fetched in this way.

7.3.3.3 AJAX in portlets

AJAX has become increasingly popular in developing dynamic web interfaces which
can change their display and retrieve information from the server without requiring
the user to submit a new request or reload the page. The underlying methods are
described in Section 6.3; the key concern here is that AJAX interactions require an

addressable endpoint on the server for retrieving or submitting data (e.g. a servlet).

Portlets may wish to use AJAX in their interfaces for faster responses to interactions,
particularly considering the additional overhead involved in reloading a portal page,
and can deploy the corresponding endpoint servlets (or JSPs) in their portlet

application.

192

Limitations and Improvements for [SR-168 portlet technology

One potential problem with this approach is due to the previously-described cross-
context sessions issue: if the servlet does not share the same session as seen by the
portlet, AJAX calls will be unable to see or update the APPLICATION_SCOPE portlet
session state. In this situation, either the necessary state must be included with every
AJAX request (as GET parameters, so only a small amount of data can be sent this
way), or the servlet would only be able to perform tasks that are completely

independent of the portlet state.

Even if the servlet and portlet do see the same session, the servlet will be restricted to
seeing and setting attributes in the APPLICATION_SCOPE portlet session. Thus AJAX
calls to a servlet will not be able to modify session attributes belonging to a particular
portlet window, or indeed access any portlet-specific functionality such as reading or

setting portlet initialisation parameters or preferences.

JSR-168 does not support AJAX calls which access any kind of portlet functionality. To
allow this, the portal would need to provide a directly-accessible endpoint with a URL
for a portlet window, for the JavaScript call to access, but with JSR-168, portlets can
only be accessed as part of a whole portal page, not individually. Such an endpoint
might act in a similar way to the suggested 'Exclusive' portlet mode described earlier:
the portlet, in a special render mode, would be able to output the entire page. Then,
provided with an appropriate URL, an AJAX call could access the portlet in this mode
directly. However, making the 'Exclusive’ render mode simply a new Portlet Mode
would not have exactly the required effect: the mode of the portlet firstly can only be
changed in an Action phase, and secondly should not have been changed as a result of
AJAX requests when the user later revisits the portal page: this usage pattern would
only want the ‘Exclusive’ portlet mode change to apply for a single AJAX request.
Hence, due to the differences in behaviour, an entirely new kind of portlet request
alongside render and action might be the better approach, rather than adding an

“Exclusive’ portlet mode.

AJAX support is currently still under discussion in both WSRP 2.0 and JSR-286 expert
groups; however regardless of the eventual decision, the WSRP 2.0 function

getResource (described in the previous section) has potential to improve the

193

Limitations and Improvements for [SR-168 portlet technology

functionality of servlets as AJAX endpoints, as it should ensure that these servlets are

provided with access to the portlet's context.

7.3.3.4 Authentication Integration: Java Authentication and Authorization Service
(JAAS)!

Each J2EE application server has a different way of configuring new Java
Authentication and Authorization Service (JAAS) login modules, so installation of the
portlets which make use of JAAS to access remote resources will additionally require

this administrative task.

We found that support for JAAS in different portal/application server combinations
was sometimes obscure or unreliable, and workarounds or special configurations
sometimes had to be added. In particular we found that several portals (Liferay,
Jetspeed 2) deliberately override the JAAS settings of the host J2EE server (e.g.
Tomcat). Integration of an existing authentication mechanism with that of a particular
Portal may therefore be an initial time-consuming task. This is not an issue with the

portlet specification, but more generally with the integration of JAAS and J2EE[¢2],

7.3.3.5 Library conflicts

In some cases, the variety of libraries available from the servlet container and the portal
can result in version conflicts with libraries included by the portlet application. This is
particularly noticeable with logging libraries (e.g. commons-logging®! or Log4j>*) and

Apache Struts/®2.

Conflicts with logging libraries are usually resolved by removing copies of the libraries
from the portlet application, and simply using the ones present in the server or the
portal webapp. Some portlet application deployment processes (e.g. Jetspeed's) will

automatically remove such logging libraries.

The issue with Apache Struts is more complicated. Struts is commonly used as the
framework for servlet applications using the MVC design paradigm, but is not yet
directly compatible with the portlet model - later versions should provide transparent
portlets support, but until then, workarounds are necessary. One such workaround is a

generic Struts bridge, developed as part of the Jetspeed 2 project, which allows an

194

Limitations and Improvements for [SR-168 portlet technology

existing Struts-based application to be used as a portlet, and can also be used with
other portals. However some portals instead provide their own built-in methods of
using Struts with portlets, e.g. with a modified Struts library, and/or inheritance from a
StrutsPortlet class provided by the particular portal. This custom Struts support can
interfere with more standard use of Struts for servlets in portlet applications - e.g. in
helper servlets that should work independently of the portal. In some cases, when the
portlet application is deployed, the portal will modify or replace the Struts
configuration or the Struts library used, so that the 'normal’ Struts-based servlets may

no longer work. Such conflicts may be much harder to resolve.

7.3.3.6 Using common code for portlets and servlets

Portlets and servlets use similar, but different classes for representing HTTP Servlet
requests, responses, and sessions. This makes sharing common control code between
servlets and portlets difficult: for example, a utility function which would get or set a
session variable would not be usable in both portlets and servlets, despite the function
calls being very similar in appearance (e.g. HttpSession.getAttribute(name) vs.
PortletSession.getAttribute(name))- In addition, the problem may arise when
using common libraries which do not (yet) provide a portlet version (e.g. commons-

fileupload®], which now supports portlets in version 1.1 released Dec 2005).

Workaround

If this issue does not appear in many places, and the code can be modified, it may be
acceptable to add a few duplicate functions that simply take different parameter types -
however this is bad coding practice. Portal-specific solutions are sometimes suggested
to obtain an object of the required class, using special knowledge of how to retrieve a
particular object from a request, or by knowing which objects are safe to cast (e.g.

Apache Pluto's portlet RenderRequest can be safely cast to a HttpServletRequest).

Our generic, JSR-168-compliant solution was to write a number of simple wrappers or
adapters, so that a Portlet object can masquerade as an HTTP Servlet object (or vice
versa). For our requirements - mostly session access - this was sufficient, although this
approach will clearly fail if an attempt is made to call a function which is not available

on the underlying object. The only significant consideration when developing and
195

Limitations and Improvements for [SR-168 portlet technology

using these wrappers was that the different scopes available in a PortletSession must
be accounted for: when wrapping Portlet and HTTP sessions, it is necessary to specify
whether the underlying session should be treated as a PORTLET_SCOPE or
APPLICATION_SCOPE session.

7.4 Considerations for the next Portlet Specification

The Portlet Standard 2.0, JSR-286'], is currently in development.

Inter-portlet communication and portlet filters are already intended to be part of the
next specification. IPC will closely follow the model defined in WSRP 2.00¥] (currently
in draft).

In addition, we have suggested the following features to the JSR-286 Expert Group,

and offered the use cases outlined in this chapter:

1. Cookies: be able to read them, and set them in the Action phase
2. Clarify support for Portlet Windows (instances of the 'same’ portlet on different
pages)
3. Retrieve ID of current Portlet Window
4. Retrieve user's Portal Session ID (the same for all portlet applications, and even
when session is new)
5. Retrieve the remote (client) IP from the request
6. Some form of 'Exclusive' display mode: this would allow portlets to serve non-
HTML content
7. Access to Portal Services
0 inspect/manage page layouts, pages
0 inspect/manage users and roles
8. Allow portlets to be queried by AJAX requests. This would need some form of
an 'Exclusive’ mode and an actual endpoint on the portal allowing direct

requests to a portlet window.

196

Limitations and Improvements for [SR-168 portlet technology

The need for the Session ID and Window ID is much less than in JSR-168, as they were
primarily useful for implementing IPC, which will no longer be a concern. Some

common use cases remain, but these have alternative approaches.

The 'Exclusive' display mode may become unnecessary if JSR-286 supports WSRP 2.0's
new 'Resources' feature. This is a new way of accessing resources within the portlet
application such as servlets, that provides the resource with all relevant portlet context,
and thus resolves the cross-context session problem. Servlets will thus be able to
reliably access the portlet session, as if in a Render phase, although they will be unable

to use IPC or other services restricted to the Action phase.

The other potential use of an Exclusive mode is by AJAX applications. Support for
AJAX is acknowledged as important and is being seriously considered by both WSRP
2.0 and JSR-286 expert groups. However it may be too complex for inclusion at this

stage, and left to version 3.

7.5 Conclusion

In this chapter, we have discussed the results of our experience in using Portal
software to manage websites, in particular Portals supporting the JSR-168 Portlet
specification. After reviewing the alternative development approaches of using J2EE
servlets or other, non-JSR-168 portals, we have assessed the limitations of JSR-168
portlets in both design and implementation, and presented current solutions and

workarounds.

As a result of these investigations, we have highlighted a number of features that
might be beneficial to add in the next portlet specification, provided relevant use cases,
and submitted them to the JSR-286 Expert Group. Any new features in this
specification will also be coordinated with the next version of WSRP, also currently

under development.

197

Conclusions and Future Work

Chapter 8. Conclusions and Future Work

In this thesis we have discussed the needs and the development of analytical web
portals, with analysis components provided by portlets accessing Discovery Net
services. The most important Discovery Net portlet in this respect is the Service portlet,
which provides a web interface for parameterising and executing workflows. In
Chapter 4, we described how workflow creators can define a simplified "black-box"
model of their workflow, and design its corresponding web interface, all using
graphical tools in the Discovery Net Java Client. The level of abstraction introduced by
the 'deployment’ process enables us to combine the automated (codeless) generation of
interfaces with customisation of individual services to create more intuitive and user-

friendly web interfaces.

The use of portlets in the Discovery Net Portal has brought several notable

improvements in comparison to the servlet-based previous version.

1) The explicit separation of Discovery Net Portal functionality into individual
portlets allows page layouts to be easily created and edited (Chapter 3).

2) The most significant advantage is in the ability to treat each Service portlet as an
independent component. Thus, multiple Service portlets showing different
services can be placed on the same or different pages for easy access. This had
previously been a requested feature, but had been completely impractical to
implement with the static structure of the servlet-based site.

3) The new (and extremely useful) ability to directly pass results from one Service to

another was achieved using our inter-portlet communication (IPC) library.

While developing the new Discovery Net portal and its collection of portlets, we
learned much about the specific advantages and limitations of using the JSR-168 portlet

standard. As a result of our experiences with JSR-168, we have suggested several new

198

Conclusions and Future Work

features to the Portlet 2.0 (JSR-286)!'%! Expert Group, and supplied corresponding use
cases. We have reported on our findings and explained some confusing or problematic
situations that may be encountered by portlet developers (Chapter 7). Whenever
relevant, we have presented workarounds and solutions to problems, the most

significant of which was the development of a JSR-168-compliant library for IPC.

IPC was left out of JSR-168, but is still an essential feature when developing portals.
Specific portal implementations often include easy-to-use IPC services for their native
(non-JSR-168) portlets. On the other hand, finding a messaging model that fits within
the constraints imposed by JSR-168 and developing a corresponding messaging library
takes significant time and effort, as well as a good understanding of the limitations of
the specification and portlet behaviour. This puts JSR-168 portlet developers

(particularly those new to the field) at a severe disadvantage.

We therefore developed a JSR-168-compliant and open-source library for IPC (Chapter
5), which offers a portable alternative to the portal-specific solutions, and has been
made freely available for download. This significantly improves the situation for
portlet developers, eliminating the hurdle of having to implement the mechanics of a
portlet messaging service. We have used this library heavily in our development of
interacting Discovery Net portlets, and also in the custom-developed portlets for the

Translational Medicine Portal.

The use of portal software such as Jetspeed®! or Oracle Portal®! provides valuable,
time-saving features including user authentication and management, user preferences,
and page creation and customisation. However, some other important features are
missing from JSR-168 portals: apart from IPC, support for the recently popular style of
web page design centred on “AJAX'1?" is possibly the most in demand. AJAX is the use
of JavaScript for asynchronous fetching of remote resources, which can then be used to
update the page display without reloading it. Its use typically produces dynamic and
interactive web pages, which behave more like fast-responding client-side applications
than static documents. Current JSR-168 and WSRP standards do not provide enough
'hooks' for full exploitation of AJAX methods in portlets, although limited use is

possible. It is described in more detail in Section 7.3.3.3 and in Section 8.2 below, and is

199

Conclusions and Future Work

used with excellent effect in the Translational Medicine Portal's OLAP browser

(Chapter 6).

A variety of actual applications have been used to inform and illustrate this work, from
theoretical demos to real-world portals. All of the application scenarios have been
collaborative efforts, involving other research groups, their students and commercial
companies. Different applications have different focuses and requirements: some rely
on user-friendly presentation of a few, well-known services; some emphasise flexibility
and allow users to create their own custom pages from a large library of services; some

use the Discovery Net portlets as just another component in an existing, larger portal.

All, however, take advantage of the Discovery Net Service portlet, which is the core
portlet of the system. This can add analysis functionality to an existing JSR-168 portal,
allowing users to do more within a familiar Portal environment, and administrators to
easily add new functionality to the system. The Service portlet has the great advantage
that once installed, it can provide access to any Discovery Net service, whether
available at the time of installation or in the future. This significantly reduces the
burden on the portal administrator, who might otherwise have to install individual
portlets for every service as it became available. The best examples of this kind of
integrated portal are the Oracle Business Intelligence demo (Section 3.9) and the
Translational Medicine Portal (Chapter 6) developed for the Windber Research
Institute. The ability to support these different scenarios is thanks to the wide range of
service deployment features providing functionality, and the flexibility of the portlet

system in providing final integration and presentation on the web.

In general we have found JSR-168 to be up to the task of building analytical portals,
despite its limitations, mainly due to the benefits of being able to deploy our portlets
on other portal servers. Experience from developing servlet-based applications is very
applicable, as there are close similarities in the portlet model, and portlets can also
make use of JSPs and servlet resources. However, it has taken several years since the
publication of JSR-168 for portlet support to be added to commercial portal
implementations and Java web libraries and frameworks (e.g. Apache Strutsi®Z,
JavaServer Faces??l, commons-fileupload®!). With the ongoing development of the
second portlet standard, we expect that standard portlets (JSR-168 and later JSR-286)
200

Conclusions and Future Work

will continue to become better established and supported with more mature

development tools.

Thus in summary, the main advantages that the use of portlets provide to the

Discovery Net Web Portal are:

* Time-saving services provided by portal software, particularly the ability for
administrators and even users to create and edit portal pages.

* (lear separation of Discovery Net functionality into components, which can be
flexibly added to page layouts.

* Communication between Service portlets, allowing results to be automatically
passed on from one service as input to another, using our JSR-168-compliant
IPC library.

* Integration of Discovery Net portlets with clients' existing JSR-168-compliant
portals.

* Third-party portlets can be installed on the Discovery Net Portal to extend its

functionality and meet specific user needs.

The main disadvantage of the current implementation is that due to incompatibilities
between servlet and portlet development tools and libraries (particularly Apache
Struts), it is difficult to adapt and maintain an existing servlet-based site for parallel use
as portlets while avoiding significant code duplication. It may in future become

necessary to abandon Struts for a portlet-compatible system such as JavaServer Faces.

8.1 Future Developments

We expect there will be interesting developments in the upcoming JSR-286 and WSRP
2.0 specifications, which should be released by the end of 2007. In particular, a
standardised method for inter-portlet communication will certainly be defined. We
hope that portal implementers will provide user-friendly methods for configuring

messaging channels/wires between portlets.

Of more interest is whether explicit support for AJAX-style portlet development will be

added - this is currently uncertain, but potentially very useful. AJAX could be used in

201

Conclusions and Future Work

two contexts: within portlets, as was done in our Windber OLAP Browser portlet, or as
a core portal design decision, as a way of updating individual portlets on a page
without needing to reload the entire page. The latter has been tried before (e.g. by
Plumtree Portal®l), and has potential for improving the client experience, as large

portal pages can be very slow to reload even if only one portlet has changed.

The confusion caused to portlet developers by the separation of sessions seen by
servlets and portlets is likely to be resolved by the new concept of 'resources'
introduced by WSRP 2.0. This will allow resources such as JSPs to be accessed with the

portlet context explicitly provided to them.

Designers of flexible, dashboard-style portals sometimes wish for a way for portlets to
modify the current page layout: e.g. to add a new portlet directly on the page as a
result of a user interaction with a standard portlet. This is currently not possible, as
JSR-168 does not provide portlets with access to the portal page management service.
This feature, along with other portal services such as user management, is likely to
remain out of reach for JSR-286 portlets, as it is not generally considered to be within

the scope of what a portlet should be able to do.

In 2006/7 there has been a lot of activity and interest centred on a related concept: web
page ‘widgets” (sometimes called ‘gadgets’ or ‘badges’) which are usually implemented
using Javascript/AJAX or Flash, and which may be easily embedded on any web page
while being hosted elsewhere. This is very similar in concept to WSRP’s remote
portlets, which are hosted on one server and accessed and presented through a
different portal. The current situation with web widgets parallels that of the portlet
world pre-standardisation, with many different widget providers (e.g. Netvibes!'],
Google Gadgets!'®l, Pageflakes!”], Windows Live Gadgets!'??l) offering similar but
usually incompatible methods of widget creation and hosting. In contrast with (mainly
Java-based) portlets, there is usually more freedom of choice and variety in server-side
implementation technology, and the resulting widgets are very simple to embed in
web pages, which allows widgets from different sources to be combined easily on the
same page. Web widgets have become a quite general and popular consumer
phenomenon on the internet, whereas portlets (being mainly associated with J2EE)

have gained their main audience in commercial organisations with managed intranets.

202

Conclusions and Future Work

A further related concept is that of operating system widgets (e.g. Yahoo Widgets!'?4,
Windows Vista Sidebar Gadgets!'?], Mac Dashboard Widgets!'!s], iPhone Web
Apps!''?l), whose recent implementations are starting to overlap with those of web
widgets as many are now developed using web technologies (usually Javascript). A
standardisation effort is beginning (Widgets 1.0021), but this is still in its early stages.
There is now an opportunity for the widget community to reuse solutions and learn

from the experiences of JSR-168 portal and portlet developers.

8.2 Future Work

Serious development on the IPC library has probably reached its natural end, as it will
be superseded by the standardised IPC which will be included in JSR-286. However,
until support for JSR-286 in portals becomes widespread - which may take several
years - the library will remain a useful resource to developers. If appropriate, we may
revise the library to use a messaging model more in line with that eventually decided

for JSR-286, so that developers using it have an easier upgrade path in future.

Discovery Net services have already undergone many changes over the course of this
work. However, further development can be expected in two areas: firstly, semantic
metadata for service inputs and outputs, and secondly, a server-side mechanism for

explicitly supporting data flow in multiple-service analysis procedures.

Semantic descriptions of service inputs and outputs would add the potential for semi-
automated composition of compatible services. This general concept has been explored
in semantic extensions to WSDL such as DAML-SI74. For example, it would be possible
to analyse the result output metadata, and provide the user with a list of services
which could use that type of result as input, and whose general service description
matches the application area of the original service. More advanced would be the
ability to offer conversion utilities to intelligently transform a result into a form usable
as input to another service. An implementation of these features would probably make
use of Semantic Webl'”®l technologies and concepts, such as RDF!7l for markup and

ontologies for semantic descriptions and comparisons!#’l.

203

Conclusions and Future Work

While the Service portlets support the transfer of results from one service to another,
this is reliant on the portlet system for setting up the messaging channels. This is only
applicable when using the workflows on the portal; the connections are set up on the
portal server. Thus the Discovery Net workflow engine is not “aware’ that services are
being used together in a sequence, and other workflow clients such as the Discovery
Net Java Client or even the traditional servlet-based portal cannot make use of service
flows set up on the portlet-based Portal. Future developments are therefore likely to
include core server support for multiple-service processes, perhaps using a standard

orchestration language such as BPEL (Business Process Execution Languagel®).

8.3 Final Thoughts

Despite complexities resulting from the use of the relatively recent portlet standard, the
development of Discovery Net portlets has been well worth the effort. We were
delighted when our belief in the potential of a standards-based analytical portal was
validated by the reaction of the Windber researchers: what started as a database
redesign became a much larger and ongoing long-term project to develop the

Translational Medicine portal.

We also hope that the availability of a library for inter-portlet communication will
make life easier for JSR-168 portlet developers. The main portlet development websites
and communities have linked to the library, and we have received some very useful
feedback as a result. Later this year, the much anticipated release of JSR-286 and WSRP
2.0 will eventually provide more flexible and powerful options to portlet developers,

hopefully enabling both standardised IPC and AJAX support.

But most of all, we look forward to seeing many exciting and useful innovations in the
development of interactive web interfaces over the next few years, as developers learn
to exploit the full potential of AJAX-style design, and the typical web portal begins to

show more of the characteristics of an Analytical Portal.

204

Glossary
AJAX
API

Applet

CERN
CMS
DOM

GIS

GM
GUI
IFRAME
IPC
J2EE

JAR

JSP
JSR-168

JSR-286
MVC
OASIS

OLAP

Glossary

Asynchronous JavaScript and XML, a JavaScript programming
language feature enabling the development of very reactive and
interactive web interfaces.

Application Programming Interface

A Java application which can be embedded on a web page
through a browser plugin.

European Organization for Nuclear Research
Content Management System

Document Object Model, a standardized representation of the
elements within an XML or HTML document as a tree.

Geographic Information System, for programmatic treatment of
map-based information.

Genetically Modified

Graphical User Interface

Inline Frame, an HTML element
Inter-portlet Communication
Java Platform, Enterprise Edition

Java Archive, a compressed file format containing resources such
as compiled Java classes.

Java Server Pages, a language for dynamic web pages.

Java Specification Request 168, the Java Portlet Standard 1.0
(2003).

Java Specification Request 286, the Java Portlet Standard 2.0
(2007, in progress).

Model-View-Controller, an architectural pattern for building
applications.

Organization for the Advancement of Structured Information
Standards

Online Analytical Processing, for producing rapid results to
queries over a large multidimensional data set.

205

Portal

Portlet

Portlet standards

SOAP

Translational
Medicine

URL

VLE/VRE

VM

Web Application

WRI
WSDL
WSRP

XML

XUL

Glossary

Typically, any web site which aggregates several different types
of functionality and presents them to users. A single page often
contains several different services. Users may be allowed to
customise the pages to their own requirements. A subset of
portals support the portlet standards.

A subsection of a web page whose functionality and
implementation is completely or mostly self-contained. Portlets
may be compatible with one of the portlet related standards, JSR-
168 or WSRP.

JSR-168 is the standard for Java-implemented portlets. WSRP
describes a web-service interface for accessing portlets
implemented in any programming language.

Simple Object Access Protocol, used by Web Services.

Methodology enabling closer linking between clinical practice
and research labs.

Uniform Resource Locator; a web “link” or “hyperlink”.

Virtual Learning Environment / Virtual Research Environment,
typically a web Portal providing access to educational or research
services.

Virtual Machine

Either a) an interactive service provided through a web site, or b)
a J2EE ‘webapp’, a server-side implementation approach.

Windber Research Institute
Web Services Description Language

Web Services for Remote Portlets, an OASIS standard. Version 1.0
is closely related to JSR-168, and Version 2.0 (in progress) with
JSR-286.

Extensible Markup Language

XML User Interface Language

206

Bibliography

Bibliography

[10]
[11]

[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]

Java Applets. http://java.sun.com/applets/

Java Authentication and Authorisation Service (JAAS), Sun Developer Network.

http://java.sun.com/products/jaas/

“Model-View-Controller”, Java BluePrints: J2EE Patterns 2000.

http://java.sun.com/blueprints/patterns/MVC-detailed.html

PHP-Nuke. http://phpnuke.org/

Research Councils UK: e-Science Programme. http://www.rcuk.ac.uk/escience/

Web Services Description Language (WSDL), 2001. http://www.w3.org/TR/wsdl

XML User Interface Language (XUL), Mozilla 2001.

http://www.mozilla.org/projects/xul/

Apache Axis, Apache Web Services Project. http://ws.apache.org/axis/

Universal Description, Discovery and Integration (UDDI) OASIS Standard, 2002.

http://www.uddi.org/

W3C Web Services Activity. http://www.w3.0rg/2002/ws/

Java 2 Platform Enterprise Edition, Version 1.4 (J2EE), 2003.

http://java.sun.com/j2ee/docs.html

Java Server Pages, Version 2.0, 2003. http://jcp.org/en/jsr/detail?id=152

Java Servlet 2.4 Specification, 2003. http://jcp.org/en/jsr/detail?id=154

OASIS Web Services for Remote Portlets (WSRP) Technical Committee.

http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrp

Portlet Open Source Trading site (POST). http://portlet-

opensrc.sourceforge.net/index.htm

Portlet Specification (JSR 168), 2003. http://www.jcp.org/en/jsr/detail?id=168

Simple Object Access Protocol (SOAP), 2003. http://www.w3.org/TR/soap/

SOAP::Lite for Perl. http://soaplite.com/

An OWL-based Web Service Ontology, OWL-S (formerly DAML-S), 2004.

http://www.daml.org/services/owl-s/

207

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]

[37]

[38]
[39]

Bibliography

Developing Virtual Research Environments, JISC Circular 2004.

http://www jisc.ac.uk/index.cfm?name=funding circular5 04

JISC Virtual Research Environments Programme, 2004.

http://www jisc.ac.uk/index.cfm?name=programme_vre

JSR 127: JavaServer Faces, 2004. http://www.jcp.org/en/jsr/detail?id=127

“My Yahoo”, 2004. http://my.yahoo.com/

NetUnity - WSRP Portal and WSRP Portlet Framework for .Net.

http://www.netunitysoftware.com/e/

OASIS Web Services Resource Framework (WSRF) Technical Committee, 2004.

http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf

“Oracle Business Intelligence Discoverer New Features Overview”, 2004.

http://www.oracle.com/technology/products/discoverer/htdocs/oraclebi discover

er 1012 fov.htm

“Ajax: A New Approach to Web Applications”, Jesse James Garrett, 2005.

http://www.adaptivepath.com/publications/essays/archives/000385.php

Apache Jetspeed 1.6 (“Fusion”), Apache Portals Project.

http://portals.apache.org/jetspeed-1/

Apache Jetspeed 2, Apache Portals Project. http://portals.apache.org/jetspeed-2/

Apache Pluto, Apache Portals Project. http://portals.apache.org/pluto/

Apache Portals Bridges, Apache Portals Project. http://portals.apache.org/bridges/

Apache Struts. http://struts.apache.org/

Apache Tomcat. http://tomcat.apache.org/

ASP.NET. http://www.asp.net

BEA WebLogic Portal.

http://www.bea.com/framework.jsp? CNT=index.htm&FP=/content/products/web

logic/

CCLRC e-Science Centre. http://www.e-science.clrc.ac.uk/web

Commons FileUpload, Apache Jakarta.

http://jakarta.apache.org/commons/fileupload/

Commons Logging. http://jakarta.apache.org/commons/logging/

Discovery Net Project, 2005. http://www.discovery-on-the.net/
208

[40]
[41]
[42]
[43]
[44]

[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Bibliography

ESRI - GIS and Mapping Software. http://www.esri.com/

eXo Portal. http://www.exoplatform.com

Gems: A collection of small JSR-168 compliant Portlets. https://gems.dev.java.net/

Generic SOAP Client. http://www.soapclient.com/soaptest.html

GIS.com - the Guide to Geographic Information Systems.

http://www.gis.com/index.cfm

Groove Virtual Office. http://www.groove.net/home/index.cfm

IBM WebSphere Portal. http://www-306.ibm.com/software/websphere/

Jakarta Tapestry. http://jakarta.apache.org/tapestry/

Java Web Start Technology. http://java.sun.com/products/javawebstart/

Java.net Portlet Community. http://community.java.net/portlet/

JBoss Application Server. http://www.jboss.org/products/jbossas

JBoss Portal. http://labs.jboss.com/portal/jbossportal/index.html

Liferay Portal. http://www liferay.com/

Log4j, Apache Logging Services. http://logging.apache.org/log4j/docs/

Macromedia Flash. http://www.macromedia.com/software/flash/flashpro/

“MapServer Portlet”, 2005. http://wiki.apache.org/portals/MapServerPortlet

MDL Chime. http://www.mdlchime.com/
MDL CrossFire Commander.

http://www.mdl.com/products/knowledge/crossfire commander/

MDL DiscoveryGate. http://www.mdl.com/products/knowledge/discoverygate/

Microsoft Office SharePoint Portal Server. http://office.microsoft.com/sharepoint/

Moveable Type, 2005. http://www.sixapart.com/movabletype/

OASIS Web Services Business Process Execution Language (WSBPEL), 2005.

http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

“Online Banking”, Moneyextra Guides 2005.

http://www.moneyworld.co.uk/guides/online-banking-011690.html

Open Grid Computing Environment (OGCE). http://www.collab-

ogce.org/nmi/index.jsp

Oracle Application Server. http://www.oracle.com/appserver/index.html

209

[65]

[66]
[67]
[68]

[69]
[70]
[71]
[72]
[73]
[74]

[75]
[76]
[77]

[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]
[87]
[88]
[89]

Bibliography

Oracle Business Intelligence.

http://www.oracle.com/technology/products/bi/index.html

Oracle Portal. http://www.oracle.com/technology/products/ias/portal/index.html

Oracle Spatial. http://www.oracle.com/technology/products/spatial/index.html

“PathPort: The Pathogen Portal Web Project”, Virginia Bioinformatics Institute.

http://pathport.vbi.vt.edu/main/home.php

PHP. http://www.php.net/

PostNuke. http://www.postnuke.com

Sakai Portal. http://sakaiproject.org/

SciFinder Scholar, CAS. http://www.cas.org/SCIFINDER/SCHOLAR/

Slashcode. http://www.slashcode.com/

SMILES, Daylight Chemical Information Systems, Inc.

http://www.davlight.com/smiles/f smiles.html

Spotfire - Interactive Visual Analytics. http://www.spotfire.com/

Stringbeans Portal. http://www.nabh.com/projects/sbportal

Sybase Enterprise Portal.

http://www.sybase.co.uk/products/developmentintegration/enterpriseportal.html

The GridSphere Portal Framework. http://www.gridsphere.org

The Large Hadron Collider (LHC) at CERN. http://lhc.web.cern.ch/lhc/

The London e-Science Centre. http://www.lesc.ic.ac.uk/

The Perl Directory. http://www.perl.org/

Typo3 Content Management System (CMS). http://www.typo3.com/

uPortal by JA-SIG. http://www.uportal.org/

Web Service Semantics - WSDL-S, 2005. http://www.w3.org/Submission/WSDL-S/

WebCT. http://www.webct.com/

Windber Research Institute. http://www.wriwindber.org/

Amazon. http://www.amazon.com

BBC News. http://news.bbc.co.uk

BEA AqualLogic User Interaction (previously Plumtree Portal).

http://www.plumtree.com/products/

210

Bibliography

[90] CGB Bioinformatics Portal, Indiana University’s Center for Genomics and

Bioinformatics. http://bioportal.cgb.indiana.edu/

[91] Condor Project. http://www.cs.wisc.edu/condor/

[92] deltaDOT Ltd.. http://www.deltadot.com/

[93] “Description of portlet work done for the Go-Geo! project” (EDINA), 2006.

http://www.gogeo.ac.uk/geoPortal10/PortletInfo.html

[94] European Bioinformatics Institute (EBI) - Software Tools.

http://www.ebi.ac.uk/Tools/

[95] GENIUS Grid Portal. https://genius.ct.infn.it/

[96] INEN Production Grid for Scientific Applications. http://grid-it.cnaf.infn.it

[97] InforSense KDE (Knowledge Discovery Environment).

http://www.inforsense.com/kde.html

[98] JavaScript, Mozilla. http://www.mozilla.org/js/

[99] JBoss PortletSwap. http://labs.jboss.com/portal/portletswap/index.html

[100] National Grid Service. http://www.ngs.ac.uk/

[101] NCBI Tools for Bioinformatics Research. http://www.ncbi.nlm.nih.gov/Tools/

[102] NIST Data Gateway. http://srdata.nist.gov/gateway/

[103] P-GRADE Grid Portal. http://www.lpds.sztaki.hu/pgportal/
[104] P-GRADE NGS portal. http://www.cpc.wmin.ac.uk/ngsportal/index.php

[105] “Portal Object Management — Dynamicity”, JBoss Portal v2.2 User Guide,

http://docs.jboss.com/ibportal/v2.2/user-guide/en/html/dynamicity.html

[106] Portlet Specification 2.0 (JSR 286), 2007. http://jcp.org/en/jsr/detail?id=286
[107] PubMed. http:// www.pubmed.gov

[108] RCSB Protein Data Bank (PDB). http://www.rcsb.org/pdb/Welcome.do

[109] Sun N1 Grid Engine. http://www.sun.com/software/gridware/

[110] The Globus Alliance. http://www.globus.org/
[111] W3C Web Services Addressing (WS-Addressing) Working Group.
http://www.w3.0rg/2002/ws/addr/

[112] Wiki, Wikipedia. http://en.wikipedia.org/wiki/Wiki

[113] WS-Security OASIS standard.

http://www.oasis-open.org/committees/tc home.php?wg abbrev=wss
211

Bibliography

[114] Yahoo Group: JSR 168 Portlets & Java Portals.

http://groups.yahoo.com/group/portlets/

[115] Google Gadgets. http://www.google.com/ig

[116] iPhone Web Apps. http://developer.apple.com/iphone/

[117] Java Message Service (JMS). http://java.sun.com/products/jms/

[118] Mac Dashboard Widgets. http://www.apple.com/downloads/dashboard/

[119] Netvibes. http://www .netvibes.com/

[120] Pageflakes. http://www.pageflakes.com/

[121] Widgets 1.0, 2007. http://www.w3.org/TR/widgets/

[122] Windows Live Gadgets. http://dev.live.com/gadgets/

[123] Windows Vista Gadgets.

http://vista.gallery.microsoft.com/vista/SideBar.aspx?mkt=en-us

[124] Yahoo Widgets. http://widgets.yahoo.com/

[125] A.Rowe, Y.Guo, D.Kalaitzopoulos, M.Osmond, and M.Ghanem. "The Discovery
Net System for High Throughput Bioinformatics". ISMB, Vol 19 p.i225-i231, 2003.

http://www.iscb.org/ismb2003/paperAbstracts/btg1031.pdf

[126] Andrew Cox. "Building Collaborative eResearch Environments", [ISC Workshop

report 2004. http://www jisc.ac.uk/index.cfm?name=event eresearch

[127] BioTeam. "iNquiry", 2006. http://web.bioteam.net/metadot/index.pl?iid=2187

[128] Carole Goble and David De Roure. "Semantic Web and Grid Computing", 2002.

http://www.semanticgrid.org/documents/swgc/swgc-final.pdf

[129] D.Gannon, G.Fox, M.Pierce, B.Plale, G.von Laszewski, C.Severance, J.Hardin,
J.Alameda, M.Thomas, and J.Boisseau. "Grid Portals: A Scientist's Access Point
for Grid Services (Draft 1)", GGF Community Practice document 2003.

http://www.extreme.indiana.edu/~gannon/ggf-portals-draft.pdf

[130] David De Roure, Nicholas Jennings, and Nigel Shadbolt. "The Semantic Grid:
Past, Present, and Future". Proceedings of the IEEE, Vol 93 p.669-681, 2005.

[131] Deepak Alur, John Crupi, and Dan Malks. "Core J2EE Patterns", 2001.

[132] Dwight Deugo. "Mobile Agent Messaging Models", Fifth International
Symposium on Autonomous Decentralized Systems, 2001.

http://csd]l2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/
212

Bibliography

&toc=comp/proceedings/isads/2001/1065/00/1065toc.xml&DOI=10.1109/ISADS.20

01.917429
[133] Elsevier MDL. "CrossFire Beilstein", 2005.

http://www.mdl.com/products/knowledge/crossfire beilstein/index.jsp

[134] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. "Design
Patterns", 1995.

[135] G.Fox, M.Pierce, D.Gannon, and M.Thomas. "Overview of Grid Computing
Environments", Global Grid Forum Memo, GFD-1.9 2003.
http://www.gridforum.org/documents/GFD/GFD-1.9.pdf

[136] Glenn R Golden. "Cross Context Sessions & Pluto", Jakarta Pluto Discussion mailing

list 2004. http://mail-archives.apache.org/mod mbox/portals-pluto-

user/200401.mbox/%3c83F94 AE0-423B-11D8-86CE-

000A95A93076@umich.edu%3e

[137] Gregor Hohpe and Bobby Woolf. "Enterprise Integration Patterns", 2003.

[138] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. "Aspect-Oriented Programming",
1241 Proceedings of the European Conference on Object-Oriented Programming,

[139] Ian Foster. "Globus Toolkit Version 4: Software for Service-Oriented Systems".
IFIP International Conference on Network and Parallel Computing, Springer-Verlag
LNCS 3779, p.2-13, 2005. http://www.globus.org/toolkit/

[140] Ian Foster, Carl Kesselman, Jeffrey M.Nick, and Stephen Tuecke. "The Physiology
of the Grid: An Open Grid Services Architecture for Distributed Systems
Integration", Global Grid Forum 2002.

[141] Ian Foster, Carl Kesselman, and Stephen Tuecke. "The Anatomy of the Grid:
Enabling Scalable Virtual Organisations". International |.Supercomputer
Applications, Vol 15 2001.

[142] J G Liu, P] Mason, N Clerici, S Chen, and A Davis. "Landslide Hazard
Assessment in the Three Gorges Area of the Yangtze River using ASTER
Imagery.", IEEE IGARSS2003 21 July 2003.

[143] Jameel Amjad Syed. "Information Structuring for Managing Discovery".

Thesis/Dissertation, University of London PhD Computing, 2005.
213

Bibliography
[144] James Hendler. "Science and the Semantic Web", Science Vol 299 p.520-521, 2003.
[145] Jetfrey Frey, Steve Graham, Tom Maguire, David Snelling, and Stephen Tuecke.

"WS-Resource Framework and WS-Notification - Technical Overview", 2004.

http://www.nesc.ac.uk/talks/385/WS-ResourceFramework UK 2004-01-28.ppt

[146] Jian Guo Liu and Jinming Ma. "Imageodesy on MPI & GRID for Co-seismic Shift
Study Using Satellite Optical Imagery", UK e-Science All Hands Meeting,
Nottingham, UK, Sept. 2004.

[147] Jian Guo Liu, Philippa] Mason, and Jinming Ma. "The co-seismic displacement of
Ms 8.1 Kunlun earthquake on 14th November 2001 measured from Landsat-7
ETM+ imagery", The 3rd International conference on Continental Earthquakes,
Beijing, China, 12 July 2004.

[148] John LaCasse. "How to get Session in portlet", Jetspeed-User mailing list 2005.

http://www.mail-archive.com/jetspeed-user@jakarta.apache.org/msg15009.html

[149] Jorge Cardoso and Amit Sheth. "Semantic e-Workflow Composition", 2002.
http://1sdis.cs.uga.edu/lib/download/TM02-004-Cardoso-Sheth.pdf

[150] Karl Czajkowski, Donald F.Ferguson, Ian Foster, Jeffrey Frey, Steve Graham, Igor
Sedukhin, David Snelling, Steve Tuecke, and William Vambenepe. "The WS-
Resource Framework (Whitepaper)", 2004.

http://www.globus.org/alliance/publications/papers.php#WSRF-Framework

[151] M.Ghanem, Y.Guo, J.Hassard, M.Osmond, and M.Richards. "Grid-based Data
Analysis of Air Pollution Data", Fourth International Workshop on
Environmental Applications of Machine Learning, 2004.

[152] M.Richards, M.Ghanem, Y.Guo, J.Hassard, and M.Osmond. "Sensor Grids for Air
Pollution Monitoring", UK e-Science All Hands Meeting 2004, Nottingham UK, 1
Sept. 2004.

[153] Mark Baker, Hong Ong, Rob Allan, and Xiao Dong Wang. "Virtual Research in
the UK: Advanced Portal Services", UK e-Science All Hands Meeting 2004,
Nottingham UK, 2 Sept. 2004.

http://www.allhands.org.uk/2004/proceedings/papers/223.pdf

214

Bibliography

[154] Martyn Foster, Daniel Hanlon, Jon MacLaren, James Marsh, Stephen Pettifer, and
Stephen Pickles. "Grid-Enabled Desktop Environments: The GRENADE Project”,
UK e-Science All Hands Meeting 2004, Nottingham UK, 1 Sept. 2004.

[155] Michelle Osmond and Yike Guo. "Adopting and Extending Portlet Technologies
for e-Science Workflow Deployment", UK e-Science All Hands Meeting 2005,
Nottingham UK, 19 Sept. 2005.

http://wwwe.allhands.org.uk/2005/proceedings/papers/446.pdf

[156] Mintel. "Mintel Report: UK Retail Briefing - Electricals Focus - December 2005",
2005.

http://reports.mintel.com/sinatra/reports/press releases/view=press view&levels

=536,1692/press display/id=197382

[157] Nate L Root. "Say Goodbye to Portal Servers", Analyst Report: Forrester Trends
2005.

http://www.microsoft.com/office/sharepoint/prodinfo/forrester mar04.mspx

[158] Navaneeth Krishnan. "Java.net Tip: Inter-portlet communication”,

https://www.dev.java.net/files/documents/1654/8898/tip1.html

[159] P N Martin. "Measurement of Atmospheric Trace Gases Using Open Path
Differential UV Absorption Spectroscopy for Urban Pollution Monitoring".
Thesis/Dissertation, University of London PhD, 2002.

[160] Philip McCarthy. "Ajax for Java developers: Build dynamic Java applications”,
IBM developerWorks 2005. http://www-

128.ibm.com/developerworks/web/library/j-ajax1/
[161] Punit Pandey. "Blog: JSR 168, WSRP, Portlets & Enterprise Portal", 2006.

http://portlets.blogspot.com/

[162] Raymond K Ng and Ganesh Kirti. "JAAS in the Enterprise", Java Developer's

Journal 2006. http://java.sys-con.com/read/171477 htm

[163] Richards, M., Ghanem, M., Osmond, M., Guo, Y., and Hassard, J. "Grid-based
analysis of air pollution data". Ecological Modelling, Vol 194 p.274-286, 2006.
http://www .sciencedirect.com/science/article/B6VBS-4]J6 WG0S-
1/2/tfb04b0b69410ea465a039655ab01a13

215

Bibliography

[164] Rob Allan, Alison Allden, David Boyd, Rob Crouchley, Nicole Harris, Liz Lyon,
Alan Robiette, David De Roure, and Scott Wilson. "Roadmap for a UK Virtual
Research Environment: Report of the JCSR VRE Working Group", 2005.

[165] Rob Allan, Chris Awre, Mark Baker, and Adrian Fish. "Portals and Portlets 2003",
NeSC Workshop Report: Edinburgh July 2003.

[166] Rob Crouchley, Adrian Fish, Rob Allan, and Dharmesh Chohan. "Sakai
Evaluation Exercise", JISC Report 2004.

http://www.grids.ac.uk/Sakai/sakai doc.pdf

[167] Roberto Barbera. "The GENIUS Grid Portal", Portals and Portlets 2003,

http://www.nesc.ac.uk/action/esi/download.cfm?index=734

[168] SF Altschul, T L Madden, A A Schaffer,] Zhang, Z Zhang, W Miller, and D]
Lipman. "Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs.". Nucleic Acids Res., 1997.

[169] S.Hassard, M.Osmond, F.Pereira, M.Howard, S.Klier, R.Martin, and J.Hassard.
"Distributed BioSensor systems for GM Crop Monitoring", UK e-Science All
Hands Meeting 2004, Nottingham UK, 1 Sept. 2004.

http://www.allhands.org.uk/2004/proceedings/papers/92.pdf

[170] Salman AlSairafi. "Visualisation and Data Mining of GIS Data".
Thesis/Dissertation, University of London MSc Advanced Computing, 2001.

[171] Salman AlSairafi, Filippia-Sofia Emmanouil, Moustafa Ghanem, Nikolaos
Giannadakis, Yike Guo, Dimitrios Kalaitzopoulos, Michelle Osmond, Anthony
Rowe, Jameel Amjad Syed, and Patrick Wendel. "The Design of Discovery Net:
Towards Open Grid Services for Knowledge Discovery". International Journal of
High Performance Computing Applications, Vol 17 2003.

[172] Stefan Egglestone, M.Nedim Alpdemir, Chris Greenhalgh, Arijit Mukherjee, and
Ian Roberts. "A portal interface to myGrid workflow technology"”, UK e-Science
All Hands Meeting 2005, Nottingham UK,

http://www.allhands.org.uk/2005/proceedings/papers/404.pdf

[173] Stefan Hepper and Marshall Lamb. "Best practices: Developing portlets using JSR
168 and WebSphere Portal V5.02", 2004. http://www-

216

Bibliography

106.ibm.com/developerworks/websphere/library/techarticles/0403 hepper/0403

hepper.html
[174] The DAML Services Coalition. "DAML-S: Semantic Markup for Web Services",

2002. http://www.daml.org/services/daml-s/0.7/daml-s.html

[175] Tim Berners-Lee, James Hendler, and Ora Lassila. "The Semantic Web". Scientific

American, 2001. http://www.sciam.com/article.cfm?collD=1&articleIlD=00048144-

10D2-1C70-84A9809EC588EF21

[176] Uche Ogbuji. "An introduction to RDF: Exploring the standard for Web-based

metadata”, IBM 2002. http://www-106.ibm.com/developerworks/xml/library/w-

rdf/?dwzone=xml&dwzone=xml

[177] V.Curcin, M.Ghanem, Y.Guo, M.K&hler, A.Rowe,].Syed, and P.Wendel.
"Discovery Net: Towards a Grid of Knowledge Discovery", KDD-2002. The
Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. Edmonton, Alberta, Canada, 23 July 2002.

[178] Wayne Holder. "Session, Session, who's got my Session?", Wayne Holder's Blog

2005. http://weblogs.java.net/blog/wholder/archive/2005/02/session _session.html

217

Appendix Al
Appendix A1l: Functions for retrieving Portlet IDs

The following functions can be used to retrieve or generate a unique ID for a portlet

window, and are included as utilities in our IPC Library.

public ~ String MSG_PORTLET_ID =" message.portletlD "

/** Utility: get (and set, if not yet present) a un ique 1D for this
* portlet instance, cached in the session.
* This uses the portlet context name, so IDs shoul d be unique
* across portlet applications.
* |f useWindowID is set, it tries to retrieve the actual portlet window 1D
* assigned by the portal. If not set, it generates a random number for the ID.
*
public String getPortletID(PortletRequest request, boolean useWindowID){
/I see if portlet id has been set in session.
PortletSession session = request.getPortlet Session(true);
if (session.getAttribute(MSG_PORTLET_ID)== null
|| session.getAttribute(MSG_PORTLET _|I D).toString().equals(")){
/I no id set; generate a new one
String id=""
if (useWindowlID){
id = getPortletWindowID(req uest);
}

if (id== null || id.length()==0){
/I make a random ID
double random = getRandomNumber();
id = ""+random;

}
String context_name = request.getContextPath();
session.setAttribute(MSG_PORTLET_ID , context_name+" _"+id);

return session.getAttribute(MSG_PORTLET_ID).toString();

private double getRandomNumber(){
double nl1 = Math.random();
double n2 = Math.random();
double random =nl/n2;
return random;

218

Appendix Al

[** Utility: Try to find the real portlet window ID , by setting a temporary
* attribute in the local portlet session.

* Returns null if unable to do so.

*

public String getPortletWindowlID(PortletRequest request){

String windowID = null ;
/I 1. set a PORTLET_SCOPE attribute with a known na me, e.g. "retrievelD".
/I To ensure that there will be no interference fro m other portlets doing
/I the same, randomly generate part of this name.
double random = MessageHelper.getRandomNumber();
String att_name =" retrievelD "+random;
PortletSession session = request.getPortlet Session(true);
if (session==null){ return null ;}
session.setAttribute(att_name, " test ", PortletSession.PORTLET_SCOPE);
/I 2. get a list of the attributes in the session, in the APPLICATION_SCOPE

Enumeration names_enum = session.getAttributeNames(
PortletSession.APPLICATION_SCOPE);

/I 3. find the full (hamespaced) name of the attrib ute that was just set,
/I using PortletSessionUtil to find the one contain ing the PORTLET_SCOPE name
while (names_enum.hasMoreElements()) {
String name =(String) names_enum.nextElement();
if (PortletSessionUtil.decodeScope(hame)==PortletSess ion.PORTLET_SCOPE){
String local_name = PortletSessionUtil.
decodeAttributeName(name);
if (att_name.equals(local_name)){
/I Found the attribute we set.

/I break down this full name into parts as describe d
/lin PLT.15.3to e xtract the Window ID: the name
/I should be of the form
/I "javax.portlet.p.<ID>?<ATTRIBUTE_NAME>"
String prefix =" javax.portlet.p. "
String suffix =" ?"+att_name;
if (name.startsWith(prefix) && name.endsWith(suffix)) {
windowID = name.substring(prefix.length(),
name.length() - suffix.length());
}
}
}
}
/I 4. clean up: remove the PORTLET_SCOPE attribute that was set earlier
session.removeAttribute(att_name, PortletSe ssion.PORTLET_SCOPE);

return windowlD;

219

Appendix A2

Appendix A2: Discovery Net Papers

For convenience, we include in this appendix three papers which provide further

details on projects discussed in this thesis.

Sensor Grids for Air Pollution Monitoring: A paper on Discovery Net's GUSTO
scenario, from the All Hands Meeting 200452, M. Ghanem, Y. Guo, J. Hassard,
M. Osmond, and M. Richards.

Distributed BioSensor systems for GM Crop Monitoring: A paper on Discovery
Net's GM Crop scenario, from the All Hands Meeting 20041'*l. S. Hassard, M.
Osmond, F. Pereira, M. Howard, S. Klier, R. Martin, and J. Hassard.

Adopting and Extending Portlet Technologies for e-Science Workflow Deployment: A
paper on the limitations of JSR-168 presented at the All Hands Meeting 2005155,
M. Osmond and Y. Guo.

Additional Discovery Net papers:

The Discovery Net System for High Throughput Bioinformatics!?l: A. Rowe, Y. Guo,
D. Kalaitzopoulos, M. Osmond, M. Ghanem. ISMB 2003

The Design of Discovery Net: Towards Open Grid Services for Knowledge
Discovery!’71: S. AlSairafi, F. Emmanouil, M. Ghanem, N. Giannadakis, Y. Guo,
D. Kalaitzopoulos, M. Osmond, A. Rowe, J. Syed, P. Wendel. International
Journal of High Performance Computing Applications, Vol 17 Issue 3, 2003.
Grid-based Analysis of air pollution data!’¢3l: M. Richards, M. Ghanem, M. Osmond,
Y. Guo, J. Hassard. Ecological Modelling Volume 194, Issues 1-3 , 25 March
2006, Pages 274-286 Special Issue on the Fourth European Conference on
Ecological Modelling - Selected Papers from the Fourth European Conference

on Ecological Modelling, September 27 - October 1, 2004, Bled, Slovenia.

220

